Eigencurves for Two-Parameter Sturm-Liouville Equations

This paper concerns two-parameter Sturm-Liouville problems of the form \[ - (p(x)y')' + q(x)y = (\lambda r(x) + \mu )y,\quad a \leqslant x \leqslant b\]with self-adjoint boundary conditions at a and b. The set of $(\lambda ,\mu ) \in {\bf R}^2 $ for which there exists a nontrivial y satisfying the differential equation and the boundary conditions turns out to be a countable union of graphs of analytic functions. Our focus is on these graphs, which are termed eigencurves in the literature.Although eigencurves have been used in a variety of ways for about a century, they seem comparatively underdeveloped in their own right. Our plan is to give motivation for the topic, elementary properties of eigencurves, illustrations on a simple example first studied by Richardson in 1918 (and since then by several authors), and some natural questions which may whet the reader's appetite. Some of these questions lead to new types of inverse Sturm-Liouville problems.

[1]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[2]  R. Picard,et al.  Cordes' two-parameter spectral representation theory , 1988 .

[3]  On the number of interior zeros of a one parameter family of solutions to a second order differential equation satisfying a boundary condition at one endpoint , 1972 .

[4]  R. Beals An abstract treatment of some forward-backward problems of transport and scattering , 1979 .

[5]  W. Magnus,et al.  Hill's equation , 1966 .

[6]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[7]  P. Binding,et al.  Asymptotics of eigencurves for second order ordinary differential equations, I , 1990 .

[8]  H. Langer,et al.  Sturm-Liouville operators with an indefinite weight function , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  P. Binding Perturbation and bifurcation of nonsingular multiparametric eigenvalues , 1984 .

[10]  M. Golubitsky,et al.  Multiparameter Bifurcation Theory , 1986 .

[11]  F. V. Atkinson,et al.  Multiparameter eigenvalue problems , 1972 .

[12]  M. Faierman,et al.  Asymptotic formulae for the eigenvalues of a two-parameter ordinary differential equation of the second order , 1972 .

[13]  R. G. D. Richardson,et al.  Contributions to the Study of Oscillation Properties of the Solutions of Linear Differential Equations of the Second Order , 1918 .

[14]  Large Scale Properties of Multiparameter Oscillation Problems , 1990 .

[15]  P. Binding,et al.  Spectral properties of two-parameter eigenvalue problems , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  Tosio Kato Perturbation theory for linear operators , 1966 .

[17]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[18]  L. Turyn Sturm—Liouville problems with several parameters☆ , 1980 .

[19]  R. Richardson Theorems of oscillation for two linear differential equations of the second order with two parameters , 1912 .

[20]  J. Pöschel,et al.  Inverse spectral theory , 1986 .

[21]  R. S. Cantrell ON COUPLED MULTIPARAMETER NONLINEAR ELLIPTIC SYSTEMS , 1986 .

[22]  Eigenvalues of Elliptic Boundary Value Problems with an Indefinite Weight Function , 1986 .

[23]  Non-Oscillation Domains of Differential Equations with Two Parameters , 1988 .

[24]  A two-parameter spectral theorem , 1992 .

[25]  H. Langer,et al.  A Krein space approach to symmetric ordinary differential operators with an indefinite weight function , 1989 .

[26]  Wendell H. Fleming,et al.  A selection-migration model in population genetics , 1975 .

[27]  J. Bognár,et al.  Indefinite Inner Product Spaces , 1974 .

[28]  P. Binding,et al.  A Variational Principle in Krein Space , 1994 .

[29]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[30]  Hans Volkmer,et al.  Multiparameter eigenvalue problems and expansion theorems , 1988 .

[31]  R. Richardson Das Jacobische Kriterium der Variationsrechnung und die Oszillationseigenschaften linearer Differentialgleichungen 2. Ordnung , 1910 .

[32]  B. Sleeman Multiparameter spectral theory in Hilbert space , 1978 .

[33]  Peter Hess,et al.  On some linear and nonlinear eigenvalue problems with an indefinite weight function , 1980 .