The proofs of the optimal bounds for mixtures of two anisotropic conducting materials in two dimensions
暂无分享,去创建一个
[1] G. Francfort,et al. Non-Classical Continuum Mechanics: Optimal Bounds for Conduction in Two-Dimensional, Two-Phase, Anisotropic Media , 1987 .
[2] S. Spagnolo,et al. Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche , 1968 .
[3] Paolo Marcellini,et al. Sulla convergenza delle soluzioni di disequazioni variazionali , 1976 .
[4] G. Alessandrini,et al. Beltrami operators, non--symmetric elliptic equations and quantitative Jacobian bounds , 2007, 0707.0727.
[5] Graeme W. Milton,et al. The Theory of Composites: Frontmatter , 2002 .
[6] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[7] J. Craggs. Applied Mathematical Sciences , 1973 .
[8] Luc Tartar,et al. Compensated compactness and applications to partial differential equations , 1979 .
[9] G. Francfort,et al. Optimal bounds for conduction in two-dimensional, multiphase, polycrystalline media , 1987 .
[10] Andrej Cherkaev,et al. G-closure of a set of anisotropically conducting media in the two-dimensional case , 1984 .
[11] V. Nesi. Quasiconformal mappings as a tool to study certain two-dimensional G-closure problems , 1996 .
[12] L. Tartar,et al. Estimation de Coefficients Homogenises , 1979 .
[13] Milton. Classical Hall effect in two-dimensional composites: A characterization of the set of realizable effective conductivity tensors. , 1988, Physical review. B, Condensed matter.