Uniform bounds for lattice point counting and partial sums of zeta functions
暂无分享,去创建一个
David Lowry-Duda | Frank Thorne | Takashi Taniguchi | Takashi Taniguchi | F. Thorne | David Lowry-Duda
[1] Paul Epstein,et al. Zur Theorie allgemeiner Zetafunctionen , 1903 .
[2] Friedrich Götze,et al. On the lattice point problem for ellipsoids , 1997 .
[3] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[4] H. Iwaniec,et al. Summation Formulae for Coefficients of L-functions , 2005, Canadian Journal of Mathematics.
[5] J. Borwein,et al. On lattice sums and Wigner limits , 2013, 1310.1423.
[6] Harold Davenport,et al. On a Principle of Lipschitz , 1951 .
[7] Takashi Taniguchi,et al. Secondary terms in counting functions for cubic fields , 2011, 1102.2914.
[8] David Lowry-Duda. On Some Variants of the Gauss Circle Problem , 2017, 1704.02376.
[9] R. Narasimhan,et al. Functional equations with multiple gamma factors and the average order of arithmetical functions , 1962 .
[10] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[11] Bingrong Huang,et al. Averages of coefficients of a class of degree 3 L-functions , 2020, The Ramanujan Journal.
[12] Mikio Sato,et al. On zeta functions associated with prehomogeneous vector spaces. , 1972, Proceedings of the National Academy of Sciences of the United States of America.
[13] Thomas Ange. Le théorème de Schanuel dans les fibrés adéliques hermitiens , 2014 .
[14] A. Ivic,et al. Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic , 2004, math/0410522.
[15] Explicit counting of ideals and a Brun–Titchmarsh inequality for the Chebotarev density theorem , 2016, International Journal of Number Theory.
[16] Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields , 2001, Canadian Journal of Mathematics.
[17] Martin Widmer. Counting primitive points of bounded height , 2010, 1204.0927.