Uniform bounds for lattice point counting and partial sums of zeta functions

We prove uniform versions of two classical results in analytic number theory. The first is an asymptotic for the number of points of a complete lattice $\Lambda \subseteq \mathbb{R}^d$ inside the $d$-sphere of radius $R$. In contrast to previous works, we obtain error terms with implied constants depending only on $d$. Secondly, let $\phi(s) = \sum_n a(n) n^{-s}$ be a `well behaved' zeta function. A classical method of Landau yields asymptotics for the partial sums $\sum_{n < X} a(n)$, with power saving error terms. Following an exposition due to Chandrasekharan and Narasimhan, we obtain a version where the implied constants in the error term will depend only on the `shape of the functional equation', implying uniform results for families of zeta functions with the same functional equation.

[1]  Paul Epstein,et al.  Zur Theorie allgemeiner Zetafunctionen , 1903 .

[2]  Friedrich Götze,et al.  On the lattice point problem for ellipsoids , 1997 .

[3]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[4]  H. Iwaniec,et al.  Summation Formulae for Coefficients of L-functions , 2005, Canadian Journal of Mathematics.

[5]  J. Borwein,et al.  On lattice sums and Wigner limits , 2013, 1310.1423.

[6]  Harold Davenport,et al.  On a Principle of Lipschitz , 1951 .

[7]  Takashi Taniguchi,et al.  Secondary terms in counting functions for cubic fields , 2011, 1102.2914.

[8]  David Lowry-Duda On Some Variants of the Gauss Circle Problem , 2017, 1704.02376.

[9]  R. Narasimhan,et al.  Functional equations with multiple gamma factors and the average order of arithmetical functions , 1962 .

[10]  C. A. Rogers,et al.  An Introduction to the Geometry of Numbers , 1959 .

[11]  Bingrong Huang,et al.  Averages of coefficients of a class of degree 3 L-functions , 2020, The Ramanujan Journal.

[12]  Mikio Sato,et al.  On zeta functions associated with prehomogeneous vector spaces. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Thomas Ange Le théorème de Schanuel dans les fibrés adéliques hermitiens , 2014 .

[14]  A. Ivic,et al.  Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic , 2004, math/0410522.

[15]  Explicit counting of ideals and a Brun–Titchmarsh inequality for the Chebotarev density theorem , 2016, International Journal of Number Theory.

[16]  Explicit Upper Bounds for Residues of Dedekind Zeta Functions and Values of L-Functions at s = 1, and Explicit Lower Bounds for Relative Class Numbers of CM-Fields , 2001, Canadian Journal of Mathematics.

[17]  Martin Widmer Counting primitive points of bounded height , 2010, 1204.0927.