M-blocks: Momentum-driven, magnetic modular robots

In this paper, we describe a novel self-assembling, self-reconfiguring cubic robot that uses pivoting motions to change its intended geometry. Each individual module can pivot to move linearly on a substrate of stationary modules. The modules can use the same operation to perform convex and concave transitions to change planes. Each module can also move independently to traverse planar unstructured environments. The modules achieve these movements by quickly transferring angular momentum accumulated in a self-contained flywheel to the body of the robot. The system provides a simplified realization of the modular actions required by the sliding cube model using pivoting. We describe the principles, the unit-module hardware, and extensive experiments with a system of eight modules.

[1]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[2]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[3]  Hajime Asama,et al.  Self-organizing collective robots with morphogenesis in a vertical plane , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[4]  Haruhisa Kurokawa A Geometric Study of Single Gimbal Control Moment Gyros , 1998 .

[5]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure and experiments , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[6]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[7]  Pradeep K. Khosla,et al.  Mechatronic design of a modular self-reconfiguring robotic system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[8]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[9]  Gregory S. Chirikjian,et al.  Modular Robot Motion Planning Using Similarity Metrics , 2001, Auton. Robots.

[10]  K. Tomita,et al.  Get Back in Shape ! A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2001 .

[11]  Eiichi Yoshida,et al.  Get back in shape! [SMA self-reconfigurable microrobots] , 2002, IEEE Robotics Autom. Mag..

[12]  Eiichi Yoshida,et al.  A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2002 .

[13]  Mark Yim,et al.  Telecubes: mechanical design of a module for self-reconfigurable robotics , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[14]  Zack J. Butler,et al.  Distributed Planning and Control for Modular Robots with Unit-Compressible Modules , 2003, Int. J. Robotics Res..

[15]  Zack J. Butler,et al.  Reconfiguration planning for heterogeneous self-reconfiguring robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[16]  T. Ura,et al.  Wind-up AUVs: Combined energy storage and attitude control using control moment gyros , 2007, OCEANS 2007.

[17]  Hitoshi Kimura,et al.  Reconfigurable group robots adaptively transforming a mechanical structure - numerical expression of criteria for structural transformation and automatic motion planning method - , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[19]  David Johan Christensen,et al.  A new meta-module for controlling large sheets of ATRON modules , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Seth Copen Goldstein,et al.  A modular robotic system using magnetic force effectors , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Mark Moll,et al.  Modular Self-reconfigurable Robot Systems: Challenges and Opportunities for the Future , 2007 .

[22]  Byoung Kwon An Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[23]  Hitoshi Kimura,et al.  Reconfigurable Modular Robot Adaptively Transforming a Mechanical Structure , 2008 .

[24]  Seth Copen Goldstein,et al.  Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Gregory S. Chirikjian,et al.  Design of a new independently-mobile reconfigurable modular robot , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Daniela Rus,et al.  Modular Robot Systems From Self-Assembly to Self-Disassembly , 2010 .

[27]  Daniela Rus,et al.  Modular Robot Systems , 2010, IEEE Robotics & Automation Magazine.

[28]  Mark Yim,et al.  Reliable External Actuation for Full Reachability in Robotic Modular Self-reconfiguration , 2010, Int. J. Robotics Res..

[29]  Hod Lipson,et al.  On-line assembly planning for stochastically reconfigurable systems , 2011, Int. J. Robotics Res..

[30]  Bernhard Sendhoff,et al.  Cross-Ball: A new morphogenetic self-reconfigurable modular robot , 2011, 2011 IEEE International Conference on Robotics and Automation.

[31]  N. Benbernou Geometric algorithms for reconfigurable structures , 2011 .

[32]  Wei-Min Shen,et al.  An online gait adaptation with SuperBot in sloped terrains , 2012, 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[33]  Emulating self-reconfigurable robots - design of the SMORES system , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[34]  Raffaello D'Andrea,et al.  The Cubli: A cube that can jump up and balance , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.