BORDER FEATURE DETECTION AND ADAPTATION: A NEW ALGORITHM FOR CLASSIFICATION OF REMOTE SENSING IMAGES

[1]  Gustavo Camps-Valls,et al.  Composite kernels for hyperspectral image classification , 2006, IEEE Geoscience and Remote Sensing Letters.

[2]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Computing k-Nearest Neighbors , 1975, IEEE Transactions on Computers.

[3]  Ethem Alpaydm Grow-and-Learn: An Incremental Method for Category Learning , 1990 .

[4]  Okan K. Ersoy,et al.  A statistical self-organizing learning system for remote sensing classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Giles M. Foody,et al.  The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM , 2006 .

[6]  Luis O. Jimenez,et al.  Classification of hyperdimensional data based on feature and decision fusion approaches using projection pursuit, majority voting, and neural networks , 1999, IEEE Trans. Geosci. Remote. Sens..

[7]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[8]  Lorenzo Bruzzone,et al.  Classification of hyperspectral remote sensing images with support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Chin-Liang Chang,et al.  Finding Prototypes For Nearest Neighbor Classifiers , 1974, IEEE Transactions on Computers.

[10]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[11]  F. Parmiggiani,et al.  An investigation of the textural characteristics associated with gray level cooccurrence matrix statistical parameters , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Giles M. Foody,et al.  A relative evaluation of multiclass image classification by support vector machines , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  David A. Landgrebe,et al.  Covariance estimation with limited training samples , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Johannes R. Sveinsson,et al.  Parallel consensual neural networks , 1997, IEEE Trans. Neural Networks.

[15]  A. Belousov,et al.  A flexible classification approach with optimal generalisation performance: support vector machines , 2002 .

[16]  Michael T. Manry,et al.  Surface parameter retrieval using fast learning neural networks , 1993 .

[17]  Beng Chin Ooi,et al.  BORDER: efficient computation of boundary points , 2006, IEEE Transactions on Knowledge and Data Engineering.

[18]  P. Atkinson,et al.  Introduction Neural networks in remote sensing , 1997 .

[19]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[20]  P. K Varshney,et al.  Advanced image processing techniques for remotely sensed hyperspectral data : with 128 figures and 30 tables , 2004 .

[21]  Chih-Jen Lin,et al.  A comparison of methods for multiclass support vector machines , 2002, IEEE Trans. Neural Networks.

[22]  David A. Landgrebe,et al.  Classification of remote sensing images having high spectral resolution , 1996 .

[23]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  B. Datt,et al.  On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multi-temporal classification , 2005 .

[26]  David A. Landgrebe,et al.  HYPERSPECTRAL DATA ANALYSIS AND FEATURE REDUCTION VIA PROJECTION PURSUIT , 1999 .

[27]  David A. Landgrebe,et al.  The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon , 1994, IEEE Trans. Geosci. Remote. Sens..

[28]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[29]  F. Melgani,et al.  An Adaptive SVM Nearest Neighbor Classifier for Remotely Sensed Imagery , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[30]  David A. Landgrebe,et al.  Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[31]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[32]  Essaid Bouktache,et al.  A Fast Algorithm for the Nearest-Neighbor Classifier , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  A. I. Ethem Alpaydin Neural models of incremental supervised and unsupervised learning , 1990 .

[34]  J. Sim,et al.  The kappa statistic in reliability studies: use, interpretation, and sample size requirements. , 2005, Physical therapy.

[35]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[36]  Okan K. Ersoy,et al.  A Spectral-Spatial Classification Algorithm for Multispectral Remote Sensing Data , 2003, ICANN.

[37]  David A. Landgrebe,et al.  Projection pursuit for high dimensional feature reduction: parallel and sequential approaches , 1995, 1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications.

[38]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[39]  Johannes R. Sveinsson,et al.  Hybrid consensus theoretic classification , 1996, IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium.

[40]  Ethem Alpaydin,et al.  GAL: Networks That Grow When They Learn and Shrink When They Forget , 1994, Int. J. Pattern Recognit. Artif. Intell..

[41]  David A. Landgrebe,et al.  Hyperspectral image data analysis , 2002, IEEE Signal Process. Mag..

[42]  David A. Landgrebe,et al.  Covariance Matrix Estimation and Classification With Limited Training Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Jenq-Neng Hwang,et al.  Nonparametric multivariate density estimation: a comparative study , 1994, IEEE Trans. Signal Process..

[44]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[45]  David A. Landgrebe,et al.  Analyzing high-dimensional multispectral data , 1993, IEEE Trans. Geosci. Remote. Sens..

[46]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[47]  David G. Stork,et al.  Pattern Classification , 1973 .

[48]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[49]  O. Ersoy,et al.  Consensual and Hierarchical Classification of Remotely Sensed Multispectral Images , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[50]  Seongwon Cho,et al.  Parallel, self-organizing, hierarchical neural networks with competitive learning and safe rejection schemes , 1993 .

[51]  Hugh B. Woodruff,et al.  An algorithm for a selective nearest neighbor decision rule (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[52]  Giles M. Foody,et al.  The significance of border training patterns in classification by a feedforward neural network using back propagation learning , 1999 .

[53]  T. Moon The expectation-maximization algorithm , 1996, IEEE Signal Process. Mag..

[54]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[55]  Nello Cristianini,et al.  Support vector machines , 2009 .

[56]  Giles M. Foody,et al.  An evaluation of some factors affecting the accuracy of classification by an artificial neural network , 1997 .

[57]  William Philpot,et al.  A derivative-aided hyperspectral image analysis system for land-cover classification , 2002, IEEE Trans. Geosci. Remote. Sens..

[58]  G. F. Hughes,et al.  On the mean accuracy of statistical pattern recognizers , 1968, IEEE Trans. Inf. Theory.

[59]  S. M. de Jong,et al.  Imaging spectrometry : basic principles and prospective applications , 2001 .