NGTS clusters survey – I. Rotation in the young benchmark open cluster Blanco 1

We determine rotation periods for 127 stars in the ∼115-Myr-old Blanco 1 open cluster using ∼200 d of photometric monitoring with the Next Generation Transit Survey. These stars span F5–M3 spectral types (1.2 M⊙ ≳ M ≳ 0.3 M⊙) and increase the number of known rotation periods in Blanco 1 by a factor of four. We determine rotation periods using three methods: Gaussian process (GP) regression, generalized autocorrelation function (G-ACF), and Lomb–Scargle (LS) periodogram, and find that the GP and G-ACF methods are more applicable to evolving spot modulation patterns. Between mid-F and mid-K spectral types, single stars follow a well-defined rotation sequence from ∼2 to 10 d, whereas stars in photometric multiple systems typically rotate faster. This may suggest that the presence of a moderate-to-high mass ratio companion inhibits angular momentum loss mechanisms during the early pre-main sequence, and this signature has not been erased at ∼100 Myr. The majority of mid-F to mid-K stars display evolving modulation patterns, whereas most M stars show stable modulation signals. This morphological change coincides with the shift from a well-defined rotation sequence (mid-F to mid-K stars) to a broad rotation period distribution (late-K and M stars). Finally, we compare our rotation results for Blanco 1 to the similarly aged Pleiades: the single-star populations in both clusters possess consistent rotation period distributions, which suggests that the angular momentum evolution of stars follows a well-defined pathway that is, at least for mid-F to mid-K stars, strongly imprinted by ∼100 Myr.

[1]  P. Cargile,et al.  K2 Rotation Periods for Low-mass Hyads and a Quantitative Comparison of the Distribution of Slow Rotators in the Hyades and Praesepe , 2019, The Astrophysical Journal.

[2]  David J Armstrong,et al.  NGTS-4b: A sub-Neptune transiting in the desert , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[4]  Daniel Foreman-Mackey,et al.  Scalable Backpropagation for Gaussian Processes using Celerite , 2018, 1801.10156.

[5]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[6]  David J Armstrong,et al.  NGTS-1b : a hot Jupiter transiting an M-dwarf , 2017, 1710.11099.

[7]  R. Angus,et al.  Inferring probabilistic stellar rotation periods using Gaussian processes , 2017, 1706.05459.

[8]  K. Covey,et al.  Poking the Beehive from Space: K2 Rotation Periods for Praesepe , 2017, 1704.04507.

[9]  J. Vanderplas Understanding the Lomb–Scargle Periodogram , 2017, 1703.09824.

[10]  Daniel Foreman-Mackey,et al.  Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series , 2017, 1703.09710.

[11]  M. Pinsonneault,et al.  Rotation of Late-type Stars in Praesepe with K2 , 2017, 1703.07031.

[12]  F. Favata,et al.  CoRoT 223992193: Investigating the variability in a low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk , 2016, 1611.05461.

[13]  John Salvatier,et al.  PyMC3: Python probabilistic programming framework , 2016 .

[14]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. II. MULTIPERIOD STARS , 2016, 1606.00055.

[15]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. I. DATA AND FIRST RESULTS , 2016, 1606.00052.

[16]  M. Pinsonneault,et al.  ROTATION IN THE PLEIADES WITH K2. III. SPECULATIONS ON ORIGINS AND EVOLUTION , 2016, 1606.00057.

[17]  John Salvatier,et al.  Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.

[18]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[19]  Spitzer Science Center,et al.  WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE , 2016, 1601.07237.

[20]  Aaron Dotter,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST) 0: METHODS FOR THE CONSTRUCTION OF STELLAR ISOCHRONES , 2016, 1601.05144.

[21]  C. Soubiran,et al.  On the metallicity of open clusters. III. Homogenised sample , 2015, 1511.08884.

[22]  J. Davenport,et al.  DETECTING DIFFERENTIAL ROTATION AND STARSPOT EVOLUTION ON THE M DWARF GJ 1243 WITH KEPLER , 2015, 1505.01524.

[23]  Antonino Francesco Lanza,et al.  Testing the recovery of stellar rotation signals from Kepler light curves using a blind hare-and-hounds exercise , 2015, 1504.04029.

[24]  Timothy D. Brandt,et al.  THE AGE AND AGE SPREAD OF THE PRAESEPE AND HYADES CLUSTERS: A CONSISTENT, ∼800 Myr PICTURE FROM ROTATING STELLAR MODELS , 2015, 1504.00004.

[25]  M. Gudel,et al.  Stellar winds on the main-sequence - II. The evolution of rotation and winds , 2015, 1503.07494.

[26]  R. Angus,et al.  Calibrating gyrochronology using Kepler asteroseismic targets , 2015, 1502.06965.

[27]  F. Gallet,et al.  Improved angular momentum evolution model for solar-like stars II. Exploring the mass dependence , 2015, 1502.05801.

[28]  Timothy D. Brandt,et al.  BAYESIAN AGES FOR EARLY-TYPE STARS FROM ISOCHRONES INCLUDING ROTATION, AND A POSSIBLE OLD AGE FOR THE HYADES , 2015, 1501.04404.

[29]  E. Guenther,et al.  A search for flares and mass ejections on young late-type stars in the open cluster Blanco-1 , 2014, 1406.2734.

[30]  P. McCullough,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[31]  A. C. Cameron,et al.  Stellar magnetism: empirical trends with age and rotation , 2014, 1404.2733.

[32]  Leslie Greengard,et al.  Fast Direct Methods for Gaussian Processes , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[34]  J. Pepper,et al.  EVALUATING GYROCHRONOLOGY ON THE ZERO-AGE-MAIN-SEQUENCE: ROTATION PERIODS IN THE SOUTHERN OPEN CLUSTER BLANCO 1 FROM THE KELT-SOUTH SURVEY , 2013, 1312.3946.

[35]  K. Stassun,et al.  Angular Momentum Evolution of Young Low-Mass Stars and Brown Dwarfs: Observations and Theory , 2013, 1309.7851.

[36]  G. Basri,et al.  Rotation and differential rotation of active Kepler stars , 2013, 1308.1508.

[37]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[38]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[39]  J. Bouvier,et al.  Observational studies of stellar rotation , 2013, 1307.2891.

[40]  F. Gallet,et al.  Improved angular momentum evolution model for solar-like stars , 2013, 1306.2130.

[41]  Suzanne Talon,et al.  Impact of internal gravity waves on the rotation profile inside pre-main sequence low-mass stars , 2013 .

[42]  C. Karoff,et al.  Rotation periods of 12 000 main-sequence Kepler stars: Dependence on stellar spectral type and comparison with v sin i observations , 2013, 1305.5721.

[43]  W. Brandner,et al.  Protoplanetary disk evolution and stellar parameters of T Tauri binaries in Chamaeleon I , 2013, 1304.1150.

[44]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[45]  Philipp Eigmüller,et al.  NGTS: a robotic transit survey to detect Neptune and super-Earth mass planets , 2012, Other Conferences.

[46]  S. Hodgkin,et al.  A photometric and astrometric investigation of the brown dwarfs in Blanco 1 , 2012, 1206.3886.

[47]  D. Montes,et al.  Magnetic activity and differential rotation in the young Sun-like stars KIC 7985370 and KIC 7765135 , 2012, 1205.5721.

[48]  S. Ekstrom,et al.  Thermohaline instability and rotation-induced mixing - III. Grid of stellar models and asymptotic asteroseismic quantities from the pre-main sequence up to the AGB for low- and intermediate-mass stars of various metallicities , 2012, 1204.5193.

[49]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[50]  S. Correia,et al.  Protoplanetary Disks of T Tauri Binary Systems in the Orion Nebula Cluster , 2012, 1201.2421.

[51]  A. Reiners,et al.  RADIUS-DEPENDENT ANGULAR MOMENTUM EVOLUTION IN LOW-MASS STARS. I , 2011, 1111.7071.

[52]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[53]  P. Tenenbaum,et al.  The Kepler view of γ Doradus stars , 2011 .

[54]  K. Biazzo,et al.  Magnetic activity and differential rotation in the very young star KIC 8429280 , 2011, 1106.4928.

[55]  D. James,et al.  A deep proper-motion survey of the nearby open cluster Blanco 1ltlink href , 2011 .

[56]  J. Rostron,et al.  Stellar rotation in the Hyades and Praesepe: gyrochronology and braking time-scale , 2010, 1101.1222.

[57]  D. James,et al.  DEBRIS DISKS OF MEMBERS OF THE BLANCO 1 OPEN CLUSTER, , 2010, 1007.0239.

[58]  R. Noyes,et al.  A large sample of photometric rotation periods for FGK Pleiades stars , 2010, 1006.0950.

[59]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[60]  H. Levato,et al.  Spectroscopic study of the open cluster Blanco 1 , 2009 .

[61]  S. Udry,et al.  Catalogues of radial and rotational velocities of 1253 F–K dwarfs in 13 nearby open clusters , 2009 .

[62]  D. James,et al.  Membership, binarity, and rotation of F-G-K stars in the open cluster Blanco 1 , 2008 .

[63]  K. Stassun,et al.  STELLAR ROTATION IN M35: MASS–PERIOD RELATIONS, SPIN-DOWN RATES, AND GYROCHRONOLOGY , 2008, 0805.1040.

[64]  S. Ounpraseuth,et al.  Gaussian Processes for Machine Learning , 2008 .

[65]  A. Cameron Differential rotation on rapidly rotating stars , 2007 .

[66]  J. Valenti,et al.  The stable magnetic field of the fully convective star V374 Peg , 2007, 0711.1418.

[67]  K. Stassun,et al.  The Effect of Binarity on Stellar Rotation: Beyond the Reach of Tides , 2007, 0707.1087.

[68]  J. Cuillandre,et al.  The lower mass function of the young open cluster Blanco 1: from 30 M_(Jup) to 3 M_☉ , 2007, 0706.2102.

[69]  S. Hodgkin,et al.  The Monitor project: rotation of low-mass stars in the open cluster NGC 2547 , 2006, astro-ph/0702518.

[70]  M. Irwin,et al.  The Monitor project: Rotation of low-mass stars in the open cluster M34 , 2006, astro-ph/0605617.

[71]  G. Meynet,et al.  Stellar evolution with rotation and magnetic fields - IV. The solar rotation profile , 2005, astro-ph/0508455.

[72]  D. James,et al.  The dependence of differential rotation on temperature and rotation , 2004, astro-ph/0410575.

[73]  S. Sciortino,et al.  XMM-Newton observations of the young open cluster Blanco 1. I. X-ray spectroscopy and photometry , 2004, astro-ph/0403303.

[74]  R. Larson The physics of star formation , 2003, astro-ph/0306595.

[75]  S. Barnes On the Rotational Evolution of Solar- and Late-Type Stars, Its Magnetic Origins, and the Possibility of Stellar Gyrochronology , 2003, astro-ph/0303631.

[76]  F. Favata,et al.  The X-ray Luminosity Distributions of the high-metallicity open cluster Blanco 1 , 2003 .

[77]  France,et al.  Brown dwarfs in the Pleiades cluster: Clues to the substellar mass function , , 2002, astro-ph/0212571.

[78]  A. M. Ghez,et al.  A High Angular Resolution Multiplicity Survey of the Open Clusters α Persei and Praesepe , 2001, astro-ph/0111156.

[79]  C. Bailer-Jones,et al.  The Mass Dependence of Stellar Rotation in the Orion Nebula Cluster , 2001, astro-ph/0104438.

[80]  F. Bonnarel,et al.  The SIMBAD astronomical database. The CDS reference database for astronomical objects , 2000, astro-ph/0002110.

[81]  M. Pinsonneault,et al.  Rotational Velocities of Low-Mass Stars in the Pleiades and Hyades , 1999, astro-ph/9911507.

[82]  F. Zerbi,et al.  γ Doradus Stars: Defining a New Class of Pulsating Variables , 1999, astro-ph/9905042.

[83]  M. Pinsonneault,et al.  Stellar models with microscopic diffusion and rotational mixing 1.: Application to the Sun , 1994, astro-ph/9408058.

[84]  M. Pinsonneault,et al.  Stellar models with microscopic diffusion and rotational mixing 2.: Application to open clusters , 1994, astro-ph/9408059.

[85]  L. Hartmann,et al.  The distribution of rotational velocities for low-mass stars in the Pleiades , 1987 .

[86]  A. E. Epstein,et al.  Photometric study of zeta SCULPTORIS cluster. , 1985 .

[87]  I. Epstein Four-color photoelectric photometry of two high-latitude clusters. , 1968 .

[88]  O. C. Wilson STELLAR CONVECTION ZONES, CHROMOSPHERES, AND ROTATION , 1966 .

[89]  B. Westerlund Three-Colour Photometry of Early-Type Stars Near the Galactic Poles , 1963 .

[90]  V. Blanco A NEW GALACTIC STAR CLUSTER IN SCULPTOR , 1949 .

[91]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[92]  S. Sciortino,et al.  XMM-Newton observation of the young open cluster Blanco 1. II. X-ray time variability and flares , 2005 .

[93]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[94]  D. Egret,et al.  The simbad astronomical database , 1991 .