On the Commutative Ring Extensions with at Most Two Non Prüfer Intermediate Rings
暂无分享,去创建一个
[1] N. Jarboui. Pairs of domains where most of the intermediate domains are Prüfer , 2020 .
[2] N. Jarboui,et al. Maximal non-integrally closed subrings of an integral domain , 2020, Ricerche di Matematica.
[3] Ayman Badawi. A NOTE ON INTERMEDIATE RINGS BETWEEN D + I and K[y1]]...[yt]] , 2018 .
[4] M. Zarrin. On Solvability of Groups with a Few Non-cyclic Subgroups , 2016 .
[5] N. Jarboui,et al. Some questions concerning proper subrings , 2015 .
[6] N. Jarboui,et al. New results about normal pairs of rings with zero-divisors , 2014 .
[7] A. Ayache. A Constructive Study About the Set of Intermediate Rings , 2013 .
[8] Ali Jaballah. Graph theoretic characterizations of maximal non-valuation subrings of a field , 2013 .
[9] Gabriel Picavet,et al. Characterizing the ring extensions that satisfy FIP or FCP , 2012 .
[10] Ali Jaballah. MAXIMAL NON-PRÜFER AND MAXIMAL NON-INTEGRALLY CLOSED SUBRINGS OF A FIELD , 2012 .
[11] Jiangtao Shi,et al. Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable , 2011 .
[12] J. Shapiro,et al. NORMAL PAIRS WITH ZERO-DIVISORS , 2011 .
[13] N. Jarboui,et al. On maximal non-valuation subrings , 2011 .
[14] D. D. Anderson,et al. Idealization of a Module , 2009 .
[15] Ayman Badawi,et al. Some finiteness conditions on the set of overrings of a phi-ring , 2008 .
[16] Othman Echi,et al. ON MAXIMAL NON-ACCP SUBRINGS , 2007 .
[17] E. Houston,et al. Arithmetic properties in pullbacks , 2007 .
[18] Ayman Badawi. Factoring Nonnil Ideals into Prime and Invertible Ideals , 2005 .
[19] S. Chapman. Arithmetical properties of commutative rings and monoids , 2005 .
[20] David F. Anderson,et al. On phi-Dedekind rings and phi-Krull rings , 2005 .
[21] David F. Anderson. ON φ-PRÜFER RINGS AND φ-BEZOUT RINGS , 2004 .
[22] Ayman Badawi. RINGS WITH PRIME NILRADICAL , 2004 .
[23] Ayman Badawi. On Nonnil-Noetherian Rings , 2003 .
[24] N. Jarboui,et al. Maximal Non-Noetherian Subrings of a Domain☆ , 2002 .
[25] Othman Echi,et al. Universally catenarian and going-down pairs of rings , 2001 .
[26] Y. Cho. PSEUDO VALUATION RINGS , 2001 .
[27] L. Izelgue,et al. Pairs of domains where all intermediate domains are Jaffard , 2000 .
[28] David F. Anderson,et al. Pseudo-valuation rings. II , 2000 .
[29] M. Nasr,et al. Maximal non-Jaffard subrings of a field , 2000 .
[30] Ayman Badawi. On divided commutative rings , 1999 .
[31] Ali Jaballah,et al. Residually algebraic pairs of rings , 1997 .
[32] KEN-ICHI Yoshida,et al. On minimal overrings of a noetherian domain , 1992 .
[33] S. Visweswaran. Intermediate rings between D+I And K [y1,…,yt] , 1990 .
[34] P. Cahen. Couples d'anneaux partageant un idéal , 1988 .
[35] J. Huckaba. Commutative Rings with Zero Divisors , 1988 .
[36] M. Fontana. Topologically defined classes of commutative rings , 1980 .
[37] D. Dobbs. On Inc-Extensions and Polynomials with Unit Content , 1980, Canadian Mathematical Bulletin.
[38] R. Gilmer,et al. A characterization of Prüfer domains in terms of polynomials. , 1975 .
[39] E. Davis. Overrings of commutative rings. III. Normal pairs , 1973 .
[40] D. Ferrand,et al. Homomorphismes minimaux d'anneaux , 1970 .
[41] M. Griffin. Prüfer rings with zero divisors. , 1969 .
[42] R. Gilmer,et al. Multiplicative ideal theory , 1968 .
[43] R. Gilmer,et al. Intersections of quotient rings of an integral domain , 1967 .
[44] E. Davis. Overrings of commutative rings. II. Integrally closed overrings , 1964 .