Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy

Dichroic polarizers and waveplates exploiting anisotropic materials have vast applications in displays and numerous optical components, such as filters, beamsplitters and isolators. Artificial anisotropic media were recently suggested for the realization of negative refraction, cloaking, hyperlenses, and controlling luminescence. However, extending these applications into the terahertz domain is hampered by a lack of natural anisotropic media, while artificial metamaterials offer a strong engineered anisotropic response. Here we demonstrate a terahertz metamaterial with anisotropy tunable from positive to negative values. It is based on the Maltese-cross pattern, where anisotropy is induced by breaking the four-fold symmetry of the cross by displacing one of its beams. The symmetry breaking permits the excitation of a Fano mode active for one of the polarization eigenstates controlled by actuators using microelectromechanical systems. The metamaterial offers new opportunities for the development of terahertz variable waveplates, tunable filters and polarimetry.

[1]  Willie J. Padilla,et al.  Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements , 2007 .

[2]  Ozgur Aktas,et al.  Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers. , 2011, Optics express.

[3]  G. Shvets,et al.  Optical properties of Fano-resonant metallic metasurfaces on a substrate , 2012, 1201.3146.

[4]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[5]  E. E. Narimanov,et al.  Engineering photonic density of states using metamaterials , 2010, 1005.5172.

[6]  Mikhail A. Noginov,et al.  Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial , 2011 .

[7]  N. Kanda,et al.  Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns. , 2007, Optics express.

[8]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[9]  N. Zheludev,et al.  Highly tunable optical activity in planar achiral terahertz metamaterials. , 2010, Optics express.

[10]  Bo Liu,et al.  Tunable magnetic metamaterial based multi-split-ring resonator (MSRR) using MEMS switch components , 2011 .

[11]  A Pothier,et al.  Split Ring Resonators (SRRs) Based on Micro-Electro-Mechanical Deflectable Cantilever-Type Rings: Application to Tunable Stopband Filters , 2011, IEEE Microwave and Wireless Components Letters.

[12]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[13]  A. Kildishev,et al.  Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking. , 2009, Physical review letters.

[14]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[15]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[16]  Xunjun He,et al.  MEMS switches controlled multi-split ring resonator as a tunable metamaterial component , 2010 .

[17]  R. P. Ingel,et al.  Tunable negative group index in metamaterial structures with large form birefringence. , 2010, Optics express.

[19]  Ai Qun Liu,et al.  Tolerance analysis for comb-drive actuator using DRIE fabrication , 2006 .

[20]  Vladimir M. Shalaev,et al.  Tunable magnetic response of metamaterials , 2009 .

[21]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[22]  R. A. Brazhe,et al.  Negative optical refraction in crystals with strong birefringence , 2007 .

[23]  T. Akin,et al.  Low-Loss Ku-Band Artificial Transmission Line With MEMS Tuning Capability , 2009, IEEE Microwave and Wireless Components Letters.

[24]  Xiaopeng Zhao,et al.  Magnetically tunable left handed metamaterials by liquid crystal orientation. , 2009, Optics express.

[25]  Xin Zhang,et al.  Comparison of birefringent electric split-ring resonator and meanderline , 2009 .

[26]  Guo Ping Wang,et al.  Transformation-optics-based nanopattern recognition , 2011 .

[27]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[28]  V. Podolskiy,et al.  Nanowire metamaterials with extreme optical anisotropy , 2006, physics/0604065.

[29]  Frederic J. Kahn,et al.  Electric‐Field‐Induced Orientational Deformation of Nematic Liquid Crystals: Tunable Birefringence , 1972 .

[30]  Kurt Busch,et al.  Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum , 1999 .

[31]  Guo-Qiang Lo,et al.  A Micromachined Reconfigurable Metamaterial via Reconfiguration of Asymmetric Split‐Ring Resonators , 2011 .

[32]  Yuri S. Kivshar,et al.  Active and tunable metamaterials , 2011 .

[33]  G. Barbastathis,et al.  Macroscopic invisibility cloak for visible light. , 2010, Physical review letters.

[34]  M. Lapine,et al.  Realistic metamaterial lenses: Limitations imposed by discrete structure , 2010 .

[35]  Xavier Rottenberg,et al.  Tunable stop-band filter at Q-band based on RF-MEMS metamaterials , 2007 .

[36]  Zhang,et al.  Asymmetric Tuning Schemes of MEMS Dual-Shutter VOA , 2008, Journal of Lightwave Technology.

[37]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[38]  Xiang Zhang,et al.  Photoinduced handedness switching in terahertz chiral metamolecules , 2012, Nature Communications.

[39]  Guo-Qiang Lo,et al.  Polarization dependent state to polarization independent state change in THz metamaterials , 2011 .