IMPROVED LABORATORY TRANSITION PROBABILITIES FOR Ce ii, APPLICATION TO THE CERIUM ABUNDANCES OF THE SUN AND FIVE r-PROCESS-RICH, METAL-POOR STARS, AND RARE EARTH LAB DATA SUMMARY

Recent radiative lifetime measurements accurate to ±5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce ii have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce ii. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log ε = 1.61 ± 0.01 (σ = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log ε = 1.61 ± 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17°3248, CS 22892–052, CS 31082–001, HD 115444, and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of ±0.01 dex similar to the solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process-only model predictions for solar system material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretation for Pr, Dy, and Tm.

[1]  E. A. Den Hartog,et al.  NEW RARE EARTH ELEMENT ABUNDANCE DISTRIBUTIONS FOR THE SUN AND FIVE r-PROCESS-RICH VERY METAL-POOR STARS , 2009, 0903.1623.

[2]  J. Lawler,et al.  Comparison of Sm II transition probabilities , 2008 .

[3]  E. A. Den Hartog,et al.  Radiative lifetimes of singly ionized cerium , 2008 .

[4]  J. Lawler,et al.  Europium, Samarium, and Neodymium Isotopic Fractions in Metal-Poor Stars , 2007, 0712.2473.

[5]  I. Ivans,et al.  Improved Laboratory Transition Probabilities for Hf II and Hafnium Abundances in the Sun and 10 Metal-poor Stars , 2007 .

[6]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Er II and Application to the Erbium Abundances of the Sun and Five r-Process-rich, Metal-poor Stars , 2008, 0804.4465.

[7]  T. Scholl,et al.  Fast-ion-beam laser-induced-fluorescence measurements of spontaneous-emission branching ratios and oscillator strengths in Sm II , 2006 .

[8]  I. Ivans,et al.  Near-Ultraviolet Observations of HD 221170: New Insights into the Nature of r-Process-rich Stars , 2006, astro-ph/0604180.

[9]  É. Biémont,et al.  Radiative lifetimes and transition probabilities of astrophysical interest in ZrII , 2006 .

[10]  É. Biémont,et al.  A database of astrophysical interest covering the UV region , 2005 .

[11]  N. Stone Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments , 2005 .

[12]  P. De Bièvre,et al.  Isotopic Compositions of the Elements, 2001 , 2005 .

[13]  M. Asplund,et al.  The Solar Chemical Composition , 2004, astro-ph/0410214.

[14]  PHOTOMETRIC ATLAS OF THE SOLAR SPECTRUM , 2005 .

[15]  J. Lawler,et al.  The Rise of the s-Process in the Galaxy , 2004, astro-ph/0410396.

[16]  C. Cowley,et al.  On the possible presence of promethium in the spectra of HD 101065 (Przybylski's star) and HD 965 , 2004 .

[17]  J. Lawler,et al.  Improved Atomic Data for Ho II and New Holmium Abundances for the Sun and Three Metal-poor Stars , 2004 .

[18]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Nd II and Application to the Neodymium Abundances of the Sun and Three Metal-poor Stars , 2003 .

[19]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[20]  Huailiang Xu,et al.  Radiative lifetimes in Ce I and Ce II , 2003 .

[21]  V. Hill,et al.  The Extremely Metal-poor, Neutron Capture-rich Star CS 22892-052: A Comprehensive Abundance Analysis , 2003, astro-ph/0303542.

[22]  T. Beers,et al.  Measurement of the Europium Isotope Ratio for the Extremely Metal poor, r-Process-enhanced Star CS 31082-001 , 2002, astro-ph/0211617.

[23]  J. Lawler,et al.  Observations of neutron-capture elements in the early galaxy , 2002, astro-ph/0210125.

[24]  C. Prieto,et al.  The isotopic mixture of barium in the metal‐poor subgiant HD 140283 , 2002, astro-ph/0205376.

[25]  T. Beers,et al.  First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001 - Implications for the r-process site(s) and radioactive cosmochronology , 2002, astro-ph/0203462.

[26]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248 , 2002, astro-ph/0202429.

[27]  T. Beers,et al.  Europium Isotopic Abundances in Very Metal Poor Stars , 2002, astro-ph/0201456.

[28]  N. Grevesse,et al.  The composition of the solar photosphere , 2002 .

[29]  J. Lawler,et al.  Improved Laboratory Transition Parameters forEu II and Application to the Solar Europium Elemental and Isotopic Composition , 2001 .

[30]  J. Lawler,et al.  Atomic Transition Probabilities in Tb II with Applications to Solar and Stellar Spectra , 2001 .

[31]  J. Lawler,et al.  Hyperfine Structure in Tb II , 2001 .

[32]  J. Lawler,et al.  Experimental Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for La II and a New Determination of the Solar Lanthanum Abundance , 2001 .

[33]  É. Biémont,et al.  Natural Radiative Lifetimes in Ce II , 2001 .

[34]  E. A. Den Hartog,et al.  Experimental and Theoretical Radiative Lifetimes, Branching Fractions, and Oscillator Strengths for Lu I and Experimental Lifetimes for Lu II and Lu III , 2000 .

[35]  Zhongshan Li,et al.  Lifetime measurements in CeI, CeII, and CeIII using time-resolved laser spectroscopy with application to stellar abundance determinations of cerium , 2000 .

[36]  C. Sneden,et al.  Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants , 2000, astro-ph/0005188.

[37]  É. Biémont,et al.  Theoretical Lifetimes and Oscillator Strengths in Ce II. Application to the Chemical Composition of the Sun , 2000 .

[38]  C. Sneden,et al.  The r-Process-enriched Low-Metallicity Giant HD 115444 , 1999, astro-ph/9910376.

[39]  J. Lawler,et al.  Atomic transition probabilities for Dy I and Dy II , 2000, IEEE Conference Record - Abstracts. 1999 IEEE International Conference on Plasma Science. 26th IEEE International Conference (Cat. No.99CH36297).

[40]  J. Lawler,et al.  Experimental and theoretical radiative lifetimes, branching fractions and oscillator strengths in Lu ii , 1999 .

[41]  M. Busso,et al.  Neutron Capture in Low-Mass Asymptotic Giant Branch Stars: Cross Sections and Abundance Signatures , 1999, astro-ph/9906266.

[42]  E. A. Den Hartog,et al.  Spectroscopic Data for the 6it s6it p3 P1 level of Lu+ for the Determination of the Solar Lutetium Abundance , 1998 .

[43]  C. Cowley,et al.  A Re-Evaluation of the Abundance of Lutetium in the Sun , 1998 .

[44]  Wolfgang L. Wiese,et al.  The NIST atomic spectra database , 1998 .

[45]  J. Lawler,et al.  Atomic transition probabilities for Tm i and Tm ii , 1997 .

[46]  Alexandre A. Radzig,et al.  Handbook of Physical Quantities , 1997 .

[47]  T. Bedding,et al.  Fundamental stellar properties : the interaction between observation and theory : proceedings of the 189th Symposium of the International Astronomical Union, held at the Women's College, University of Sydney, Australia, 13-17 January 1997 , 1997 .

[48]  T. Bedding Fundamental stellar properties: the interaction between observation and theory. Poster proceedings. , 1997 .

[49]  G. Preston,et al.  The Ultra--Metal-poor, Neutron-Capture--rich Giant Star CS 22892-052 , 1996 .

[50]  C. Sneden,et al.  First Detection of Platinum, Osmium, and Lead in a Metal-Poor Halo Star: HD 126238 , 1996 .

[51]  J. Tomkin,et al.  The r-process element europium in galactic disk F and G dwarf stars , 1995 .

[52]  STELLAR POPULATION AND ABUNDANCE STUDIES AT HIGH RESOLUTION WITH VERY LARGE TELESCOPES , 1995 .

[53]  W. Schade,et al.  Radiative lifetimes of neutral and singly ionized atoms of refractory elements , 1995 .

[54]  K. Cunha,et al.  The chemical composition of omega centauri. I. Heavy-element abundances of seven warm giants , 1995 .

[55]  W. Whaling,et al.  Argon branching ratios for spectrometer response calibration , 1993 .

[56]  B. Fawcett Computed oscillator strengths and Landég values of Ce II , 1990 .

[57]  S. Hashiguchi,et al.  Experimentally Determined Branching Ratios for Transitions in ArII , 1985 .

[58]  K. Danzmann,et al.  Argon branching ratios for spectral intensity calibration: a reply , 1982 .

[59]  P. Hannaford,et al.  Oscillator strengths for Y I and Y II and the solar abundance of yttrium. , 1982 .

[60]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[61]  D. Adams,et al.  Argon branching ratios for spectral-intensity calibration , 1981 .

[62]  A. Irwin Polynomial partition function approximations of 344 atomic and molecular species. , 1981 .

[63]  W. C. Martin,et al.  Atomic Energy Levels - The Rare-Earth Elements. The Spectra of Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, and Lutetium, , 1978 .

[64]  J. Brault,et al.  Rapid-scan high-resolution Fourier spectrometer for the visible. , 1976 .

[65]  H. Holweger,et al.  The photospheric barium spectrum: Solar abundance and collision broadening of Baii lines by hydrogen , 1974 .

[66]  R. Zalubas,et al.  Atomic energy levels - The rare-Earth elements , 1974 .

[67]  C. Sneden The nitrogen abundance of the very metal-poor star HD 122563. , 1973 .

[68]  G. K. Woodgate Elementary Atomic Structure , 1970 .

[69]  B. Edĺen,et al.  The Dispersion of Standard Air , 1953 .