Thermal Hydraulic Challenges of Gas Cooled Fast Reactors with Passive Safety Features

[1]  M. Kazimi,et al.  Deteriorated turbulent heat transfer (DTHT) of gas up-flow in a circular tube: Heat transfer correlations , 2008 .

[2]  M. Kazimi,et al.  Deteriorated turbulent heat transfer (DTHT) of gas up-flow in a circular tube: Experimental data , 2008 .

[3]  Pavel Hejzlar,et al.  Experimental and computational analysis of gas natural circulation loop , 2007 .

[4]  M. Driscoll,et al.  Use of beryllium oxide to shape power and reduce void reactivity in gas cooled fast reactors , 2006 .

[5]  K. H. Sarma,et al.  New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels , 2006 .

[6]  Vaclav Dostal,et al.  High-Performance Supercritical Carbon Dioxide Cycle for Next-Generation Nuclear Reactors , 2006 .

[7]  Michael J. Driscoll,et al.  REACTOR PHYSICS CHALLENGES IN GEN-IV REACTOR DESIGN , 2005 .

[8]  M. Driscoll,et al.  An advanced vented fuel assembly design for GFR applications , 2005 .

[9]  Michael J. Driscoll,et al.  Gas cooled fast reactor for generation IV service , 2005 .

[10]  P. Hejzlar,et al.  A Semi-Passive Approach to GFR Depressurized Decay Heat Removal Accidents , 2005 .

[11]  Vaclav Dostal,et al.  A supercritical carbon dioxide cycle for next generation nuclear reactors , 2004 .

[12]  Neil E. Todreas,et al.  The Long-Life Gas Turbine Fast Reactor Matrix Core Concept , 2002 .

[13]  D. Wade,et al.  The Integral Fast Reactor Concept: Physics of Operation and Safety , 1988 .

[14]  V. Gnielinski New equations for heat and mass transfer in turbulent pipe and channel flow , 1976 .