Probabilistic Motion Switch Tracking Method Based on Mean Shift and Double Model Filters

Mean shift tracking fails when the velocity of target is so large that the target's window kernel in the previous frame can not cover the target in the current frame. Combination of mean shift and single Kalman filter also fails when the target's velocity changed suddenly. To deal with the problem of tracking image target that has large and changing velocity, an efficient image tracking method integrated mean shift and double model filters is proposed. Two motion models can switch each other by using a probabilistic likelihood. Experiment results show the method integrated mean shift and double model filters can successfully keep tracking target, no matter the target's velocity is large or small, changing or constant, with modest requirement of computation resource.

[1]  Derek R. Magee,et al.  Tracking multiple vehicles using foreground, background and motion models , 2004, Image Vis. Comput..

[2]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Dorin Comaniciu,et al.  Mean shift and optimal prediction for efficient object tracking , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[4]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[5]  Mubarak Shah,et al.  Target tracking in airborne forward looking infrared imagery , 2003, Image Vis. Comput..

[6]  Harry E. Hutchinson Transmission Lines and the Environment , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[9]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[10]  Christopher M. Bishop,et al.  Non-linear Bayesian Image Modelling , 2000, ECCV.

[11]  Y. Bar-Shalom,et al.  Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm , 1989 .

[12]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[13]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[14]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[16]  Tieniu Tan,et al.  Real time hand tracking by combining particle filtering and mean shift , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[17]  Tomaso A. Poggio,et al.  Pedestrian detection using wavelet templates , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.