BioMed Central Review

Genetic algorithms instruct sophisticated biological organization. Three qualitative kinds of sequence complexity exist: random (RSC), ordered (OSC), and functional (FSC). FSC alone provides algorithmic instruction. Random and Ordered Sequence Complexities lie at opposite ends of the same bi-directional sequence complexity vector. Randomness in sequence space is defined by a lack of Kolmogorov algorithmic compressibility. A sequence is compressible because it contains redundant order and patterns. Law-like cause-and-effect determinism produces highly compressible order. Such forced ordering precludes both information retention and freedom of selection so critical to algorithmic programming and control. Functional Sequence Complexity requires this added programming dimension of uncoerced selection at successive decision nodes in the string. Shannon information theory measures the relative degrees of RSC and OSC. Shannon information theory cannot measure FSC. FSC is invariably associated with all forms of complex biofunction, including biochemical pathways, cycles, positive and negative feedback regulation, and homeostatic metabolism. The algorithmic programming of FSC, not merely its aperiodicity, accounts for biological organization. No empirical evidence exists of either RSC of OSC ever having produced a single instance of sophisticated biological organization. Organization invariably manifests FSC rather than successive random events (RSC) or low-informational self-ordering phenomena (OSC).

[1]  R. Shapiro Comments on `Concentration by Evaporation and the Prebiotic Synthesis of Cytosine' , 2002, Origins of life and evolution of the biosphere.

[2]  W. H. Zurek,et al.  Thermodynamic cost of computation, algorithmic complexity and the information metric , 1989, Nature.

[3]  E. Rhoades,et al.  Watching proteins fold one molecule at a time , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Pierre-Alain Monnard,et al.  Preparation of vesicles from nonphospholipid amphiphiles. , 2003, Methods in enzymology.

[5]  M. Conrad Unity of measurement and motion. , 2001, Bio Systems.

[6]  H P Yockey,et al.  A calculation of the probability of spontaneous biogenesis by information theory. , 1977, Journal of theoretical biology.

[7]  Hubert P. Yockey,et al.  Information theory, evolution and the origin of life , 2005, Inf. Sci..

[8]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[9]  A. Trewavas Seven clues to the origin of life , 1987 .

[10]  Gerald F. Joyce,et al.  2 Prospects for Understanding the Origin of the RNA World , 1999 .

[11]  Hubert P. Yockey,et al.  Origin of Life on Earth and Shannon's Theory of Communication , 2000, Comput. Chem..

[12]  S M Pincus,et al.  Irregularity and asynchrony in biologic network signals. , 2000, Methods in enzymology.

[13]  Jack T. Trevors,et al.  MORE THAN METAPHOR: GENOMES ARE OBJECTIVE SIGN SYSTEMS , 2006 .

[14]  H. Pattee On the origin of macromolecular sequences. , 1961, Biophysical Journal.

[15]  Ilya Prigogine,et al.  From Being To Becoming , 1980 .

[16]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[17]  L. Floridi Blackwell Guide to the Philosophy of Computing and Information , 2003 .

[18]  A. Cairns-smith,et al.  The origin of life and the nature of the primitive gene. , 1966, Journal of theoretical biology.

[19]  A. Cairns-smith Takeover mechanisms and early biochemical evolution. , 1977, Bio Systems.

[20]  Algorithmic complexity of a protein. , 1996 .

[21]  Dewey Algorithmic complexity of a protein. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[23]  M. Eigen,et al.  Selection and self-organization of self-reproducing macromolecules under the constraint of constant flux. , 1979, Biophysical chemistry.

[24]  Christian M. Reidys,et al.  Bio-molecular Shapes and Algebraic Structures , 1996, Comput. Chem..

[25]  G. Pályi,et al.  Fundamentals of Life , 2002 .

[26]  M. Legge,et al.  The protein folds as platonic forms: new support for the pre-Darwinian conception of evolution by natural law. , 2002, Journal of theoretical biology.

[27]  N. Cocchiarella,et al.  Situations and Attitudes. , 1986 .

[28]  Freeman J. Dyson,et al.  A model for the origin of life , 2005, Journal of Molecular Evolution.

[29]  T. D. Schneider,et al.  Information content of individual genetic sequences. , 1997, Journal of theoretical biology.

[30]  A. Mills,et al.  Manual of environmental microbiology. , 2007 .

[31]  J. Schnakenberg,et al.  G. Nicolis und I. Prigogine: Self‐Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. J. Wiley & Sons, New York, London, Sydney, Toronto 1977. 491 Seiten, Preis: £ 20.–, $ 34.– , 1978 .

[32]  M. Nashimoto,et al.  The RNA/protein symmetry hypothesis: experimental support for reverse translation of primitive proteins. , 2001, Journal of theoretical biology.

[33]  GEORGE I. BELL,et al.  Evolution of Simple Sequence Repeats , 1996, Comput. Chem..

[34]  Richard W. Hamming,et al.  Coding and Information Theory , 1980 .

[35]  Donald C. Mikulecky,et al.  Network Thermodynamics and Complexity: A Transition to Relational Systems Theory , 2001, Comput. Chem..

[36]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[37]  Douglas W. Smith Biocomputing: informatics and genome projects. , 1994 .

[38]  C. Adami,et al.  Evolution of Biological Complexity , 2000, Proc. Natl. Acad. Sci. USA.

[39]  Trevor I. Dix,et al.  Sequence Complexity for Biological Sequence Analysis , 2000, Comput. Chem..

[40]  H. P. Yockey,et al.  Information Theory And Molecular Biology , 1992 .

[41]  R. Guimarães Linguistics of biomolecules and the protein-first hypothesis for the origins of cells , 1995 .

[42]  L S Liebovitch,et al.  Is there an error correcting code in the base sequence in DNA? , 1996, Biophysical journal.

[43]  Jacques Ricard,et al.  What do we mean by biological complexity? , 2003, Comptes rendus biologies.

[44]  H P Yockey,et al.  Self organization origin of life scenarios and information theory. , 1981, Journal of theoretical biology.

[45]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[46]  Gertrudis Van de Vijver,et al.  Evolutionary Systems Biological and Epistemological Perspectives on Selection and Self-Organization , 1998 .

[47]  Jon Umerez,et al.  Semantic Closure: A Guiding Notion to Ground Artificial Life , 1995, ECAL.

[48]  M. Eigen,et al.  The Hypercycle: A principle of natural self-organization , 2009 .

[49]  U. Bhalla,et al.  Complexity in biological signaling systems. , 1999, Science.

[50]  B. Ganem RNA world , 1987, Nature.

[51]  H. Pattee Irreducible and complementary semiotic forms , 2001 .

[52]  Robert Rosen,et al.  Foundations of mathematical biology , 1972 .

[53]  K. Popper,et al.  The Logic of Scientific Discovery , 1960 .

[54]  L F Landweber,et al.  Do Proteins Predate DNA? , 1999, Science.

[55]  Émile Borel,et al.  Probabilities and Life , 1962 .

[56]  Charles H. Bennett Logical depth and physical complexity , 1988 .

[57]  Peter Cariani,et al.  Towards an Evolutionary Semiotics: The Emergence of New Sign-Functions in Organisms and Devices , 1998 .

[58]  R. Shapiro,et al.  Prebiotic cytosine synthesis: a critical analysis and implications for the origin of life. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H H Pattee,et al.  The physics of symbols: bridging the epistemic cut. , 2001, Bio Systems.

[60]  David C. Bradley The Genome Chose Its Alphabet With Care , 2002, Science.

[61]  J. Farris CONJECTURES AND REFUTATIONS , 1995, Cladistics : the international journal of the Willi Hennig Society.

[62]  R. Badii,et al.  Complexity: Hierarchical Structures and Scaling in Physics , 1997 .

[63]  J. Ferris,et al.  Oligomerization of ribonucleotides on montmorillonite: reaction of the 5'-phosphorimidazolide of adenosine. , 1992, Science.

[64]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[65]  Chun-Hsien Huang,et al.  Montmorillonite: A multifunctional mineral catalyst for the prebiological formation of phosphate esters , 2005, Origins of life and evolution of the biosphere.

[66]  A K Konopka,et al.  Complexity charts can be used to map functional domains in DNA. , 1990, Genetic analysis, techniques and applications.

[67]  J. Ferris,et al.  Sequence- and regioselectivity in the montmorillonite-catalyzed synthesis of RNA. , 2003, Journal of the American Chemical Society.

[68]  Evandro Agazzi,et al.  What is Complexity , 2002 .

[69]  Richard Gordon,et al.  Evolution Escapes Rugged Fitness Landscapes by Gene Or Genome Doubling: the Blessing of Higher Dimensionality , 1994, Computers and Chemistry.

[70]  Howard Hunt Pattee,et al.  Artificial Life Needs a Real Epistemology , 1995 .

[71]  J Cairns,et al.  Cold spring harbor. , 1991, Science.

[72]  J. Collado-Vides Integrative Approaches to Molecular Biology , 1996 .

[73]  M. Eigen Molecular self-organization and the early stages of evolution , 1971, Quarterly Reviews of Biophysics.

[74]  Wenhua Huang,et al.  Synthesis of 35-40 mers of RNA oligomers from unblocked monomers. A simple approach to the RNA world. , 2003, Chemical communications.

[75]  M. Eigen,et al.  The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle. , 1977, Die Naturwissenschaften.

[76]  T. D. Schneider,et al.  Evolution of biological information. , 2000, Nucleic acids research.

[77]  H H Pattee,et al.  Complementarity vs. reduction as explanation of biological complexity. , 1979, The American journal of physiology.

[78]  J. Ninio,et al.  The accuracy of DNA replication. , 1979, Biochimie.

[79]  Andrzej K Konopka,et al.  Sequence Complexity and Composition , 2005 .

[80]  S. Leibler,et al.  Physical Properties Determining Self-Organization of Motors and Microtubules , 2001, Science.

[81]  H P Yockey Can the central dogma by derived from information theory? , 1978, Journal of theoretical biology.

[82]  Howard Hunt Pattee,et al.  The complementarity principle in biological and social structures , 1978 .

[83]  Seth Lloyd,et al.  Information measures, effective complexity, and total information , 1996, Complex..

[84]  J. Wong A co-evolution theory of the genetic code. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[85]  Ilya Prigogine,et al.  Order out of chaos , 1984 .

[86]  H. Pattee DYNAMIC AND LINGUISTIC MODES OF COMPLEX SYSTEMS , 1977 .

[87]  S. Atamas Self-organization in computer simulated selective systems. , 1996, Bio Systems.

[88]  Graham Cairns-Smith Seven clues to the origin of life , 1985 .

[89]  C. Adami,et al.  Introduction To Artificial Life , 1997, IEEE Trans. Evol. Comput..

[90]  G. Vijver Selected Self-Organization And the Semiotics of Evolutionary Systems , 1998 .

[91]  Peter Schuster,et al.  A principle of natural self-organization , 1977, Naturwissenschaften.

[92]  Jeremy W. Dale,et al.  Molecular Genetics of Bacteria , 1989 .

[93]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[94]  Luis M. Rocha,et al.  Evolution with material symbol systems. , 2001, Bio Systems.

[95]  J. Dworkin,et al.  Alternative bases in the RNA world: The prebiotic synthesis of urazole and its ribosides , 2004, Journal of Molecular Evolution.

[96]  C. H. WADDINGTON,et al.  Towards a Theoretical Biology , 1968, Nature.

[97]  D. Lancet,et al.  Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[99]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[100]  E. Mayr This Is Biology: The Science of the Living World , 1997 .

[101]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[102]  John L. Casti,et al.  Complexity, Language, and Life: Mathematical Approaches , 1986 .

[103]  J. Ferris Catalysis and prebiotic RNA synthesis , 1993, Origins of life and evolution of the biosphere.

[104]  Andrzej K. Konopka,et al.  Sequences and Codes: Fundamentals of Biomolecular Cryptology , 1994 .

[105]  M. Kimura,et al.  The role of robustness and changeability on the origin and evolution of genetic codes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[106]  Howard Hunt Pattee,et al.  Physical Problems of the Origin of Natural Controls , 1973 .

[107]  Howard H. Pattee,et al.  Artificial Life Needs a Real Epistemology , 1995, ECAL.

[108]  Stuart A. Kauffman,et al.  The origins of order , 1993 .

[109]  J. Ninio,et al.  Illusory defects and mismatches: why must DNA repair always be (slightly) error prone? , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[110]  L. Orgel The Origins of Life: Molecules and Natural Selection , 1973 .

[111]  M. Eigen,et al.  Emergence of the Hypercycle , 1979 .

[112]  I. Prigogine,et al.  Formative Processes. (Book Reviews: Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations) , 1977 .

[113]  H. P. Yockey,et al.  An application of information theory to the Central Dogma and the Sequence Hypothesis. , 1974, Journal of theoretical biology.

[114]  M Conrad,et al.  Origin of life and the underlying physics of the universe. , 1997, Bio Systems.

[115]  T. D. Schneider,et al.  Theory of molecular machines. II. Energy dissipation from molecular machines. , 1991, Journal of theoretical biology.

[116]  R M Füchslin,et al.  Evolutionary self-organization of cell-free genetic coding , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[117]  A. Oparin [The origin of life]. , 1938, Nordisk medicin.

[118]  G. Maugin THERMOSTATICS AND THERMODYNAMICS , 1999 .

[119]  G. J. Chaitin,et al.  TO A MATHEMATICAL DEFINITION OF “ LIFE ” , 1970 .

[120]  F. Dyson Origins of Life: Open Questions , 1985 .

[121]  P. Oefner Sequence variation and the biological function of genes: methodological and biological considerations. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[122]  Keith Devlin,et al.  Logic and information , 1991 .

[123]  J. Ninio,et al.  Kinetic devices in protein synthesis, DNA replication, and mismatch repair. , 1987, Cold Spring Harbor Symposia on Quantitative Biology.

[124]  Stanley L. Miller,et al.  The Origin and Early Evolution of Life: Prebiotic Chemistry, the Pre-RNA World, and Time , 1996, Cell.

[125]  G. Luo,et al.  Simultaneous formation of peptides and nucleotides from n-phosphothreonine , 1996, Origins of life and evolution of the biosphere.

[126]  L. Orgel,et al.  Nonenzymatic template-directed reactions on altritol oligomers, preorganized analogues of oligonucleotides. , 2000, Chemistry.

[127]  Gregory J. Chaitin,et al.  Information, Randomness and Incompleteness , 1987 .

[128]  A. Lazcano,et al.  The roads to and from the RNA world. , 2003, Journal of theoretical biology.

[129]  David Bradley Informatics. The genome chose its alphabet with care. , 2002, Science.

[130]  R Shapiro A Replicator Was Not Involved in the Origin of Life , 2000, IUBMB life.

[131]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[132]  Luis Mateus Rocha,et al.  Material Representations: From the Genetic Code to the Evolution of Cellular Automata , 2005, Artificial Life.

[133]  L. Orgel,et al.  Synthesis of long prebiotic oligomers on mineral surfaces , 1996, Nature.

[134]  J. Trevors,et al.  Chance and necessity do not explain the origin of life , 2004, Cell biology international.

[135]  T. D. Schneider,et al.  Theory of molecular machines. I. Channel capacity of molecular machines. , 1991, Journal of theoretical biology.

[136]  Andrzej K. Konopka,et al.  Grand Metaphors of Biology in the Genome Era , 2002, Comput. Chem..

[137]  C. Adami What is complexity? , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[138]  T. Cech,et al.  Ribozyme-mediated repair of defective mRNA by targeted trans-splicing , 1994, Nature.

[139]  Antony M. Jose,et al.  The Triple Helix: Gene, Organism, and Environment , 2001, The Yale Journal of Biology and Medicine.

[140]  H H Pattee,et al.  The complementarity principle and the origin of macromolecular information. , 1979, Bio Systems.

[141]  B. Rode,et al.  Peptides and the origin of life. , 1999, Peptides.

[142]  T D Schneider,et al.  Measuring molecular information. , 1999, Journal of theoretical biology.

[143]  S. Kauffman At Home in the Universe: The Search for the Laws of Self-Organization and Complexity , 1995 .

[144]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[145]  D. Deamer,et al.  Eutectic phase polymerization of activated ribonucleotide mixtures yields quasi-equimolar incorporation of purine and pyrimidine nucleobases. , 2003, Journal of the American Chemical Society.

[146]  P. Moser Knowledge and the Flow of Information , 1986 .

[147]  Rolf Herken,et al.  The Universal Turing Machine: A Half-Century Survey , 1992 .

[148]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[149]  Robert Rosen,et al.  Essays on Life Itself , 1999 .

[150]  C. Adami,et al.  Physical complexity of symbolic sequences , 1996, adap-org/9605002.

[151]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[152]  B. Rode,et al.  Peptides and the origin of life1 , 1999, Peptides.

[153]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[154]  Yufen Zhao,et al.  Phosphoryl amino acids: Common origin for nucleic acids and protein , 1995 .

[155]  Rónán O'Beirne,et al.  The Blackwell Guide to the Philosophy of Computing and Information , 2004 .

[156]  Donald C. Mikulecky,et al.  The Emergence of Complexity: Science Coming of Age Or Science Growing Old? , 2001, Comput. Chem..

[157]  E. Schrödinger What Is Life , 1946 .

[158]  Donald M. MacKay,et al.  Information, mechanism and meaning , 1969 .

[159]  M. Vaneechoutte,et al.  The Scientific Origin of Life: Considerations on the Evolution of Information, Leading to an Alternative Proposal for Explaining the Origin of the Cell, a Semantically Closed System , 2000, Annals of the New York Academy of Sciences.

[160]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[161]  Gerald F. Joyce,et al.  1 Prospects for Understanding the Origin of the RNA World , 1993 .

[162]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[163]  L. Floridi OPEN PROBLEMS IN THE PHILOSOPHY OF INFORMATION , 2004 .

[164]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[165]  J Hoffmeyer,et al.  Code‐Duality and the Epistemic Cut , 2000, Annals of the New York Academy of Sciences.

[166]  Jaakko Hintikka,et al.  On Semantic Information , 1970 .

[167]  Y. Pilpel,et al.  Graded Autocatalysis Replication Domain (GARD): Kinetic Analysis of Self-Replication in Mutually Catalytic Sets , 1998, Origins of life and evolution of the biosphere.