ASTROD and ASTROD I -- Overview and Progress

In this paper, we present an overview of ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I mission concepts and studies. The missions employ deep-space laser ranging using drag-free spacecraft to map the gravitational field in the solar-system. The solar-system gravitational field is determined by three factors: the dynamic distribution of matter in the solar system; the dynamic distribution of matter outside the solar system (galactic, cosmological, etc.) and gravitational waves propagating through the solar system. Different relativistic theories of gravity make different predictions of the solar-system gravitational field. Hence, precise measurements of the solar-system gravitational field test all these. The tests and observations include: (i) a precise determination of the relativistic parameters beta and gamma with 3-5 orders of magnitude improvement over previous measurements; (ii) a 1-2 order of magnitude improvement in the measurement of G-dot; (iii) a precise determination of any anomalous, constant acceleration Aa directed towards the Sun; (iv) a measurement of solar angular momentum via the Lense-Thirring effect; (v) the detection of solar g-mode oscillations via their changing gravity field, thus, providing a new eye to see inside the Sun; (vi) precise determination of the planetary orbit elements and masses; (viii) better determination of the orbits and masses of major asteroids; (ix) detection and observation of gravitational waves from massive black holes and galactic binary stars in the frequency range 0.05 mHz to 5 mHz; and (x) exploring background gravitational-waves.

[1]  W. Ni,et al.  Acceleration disturbances and requirements for ASTROD I , 2005, gr-qc/0506012.

[2]  Jens H. Gundlach,et al.  IMPROVED TEST OF THE EQUIVALENCE PRINCIPLE FOR GRAVITATIONAL SELF-ENERGY , 1999 .

[3]  W. Ni ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD I , 2007 .

[4]  T. J. Sumner,et al.  Electrostatic charging of cubic test masses in the LISA mission , 2003 .

[5]  P. Tortora,et al.  A test of general relativity using radio links with the Cassini spacecraft , 2003, Nature.

[6]  J. Christensen-Dalsgaard SOLAR g-MODE OSCILLATIONS: EXPERIMENTAL DETECTION EFFORTS AND THEORETICAL ESTIMATES , 2002 .

[7]  A. P. Patón Current Prospects for Astrod Inertial Sensor , 2007, 0704.3465.

[8]  Astrod orbit simulation and accuracy of relativistic parameter determination , 2000 .

[9]  Robert L. Byer,et al.  Advanced gravitational reference sensor for high precision space interferometers , 2005 .

[10]  C. D. Hoyle,et al.  Current error estimates for LISA spurious accelerations , 2004 .

[11]  W. Ni Empirical Foundations of the Relativistic Gravity , 2005, gr-qc/0504116.

[12]  J. Anderson,et al.  Experimental test of the variability of G using Viking lander ranging data , 1983 .

[13]  Etienne Samain,et al.  Millimetric Lunar Laser Ranging at OCA (Observatoire de la Côte d'Azur) , 1998 .

[14]  E. Adelberger New tests of Einstein's equivalence principle and Newton's inverse-square law , 2001 .

[15]  I. Shapiro General Relativity and Gravitation, 1989: Solar system tests of general relativity: recent results and present plans , 1990 .

[16]  Shuchao Wu,et al.  PROGRESS OF GROUND TEST OF INERTIAL SENSOR FOR ASTROD I , 2008 .

[17]  W. Ni,et al.  Progress in laboratory R & D for fundamental physics space missions - weak light phase-locking, fibre-linked heterodyne interferometry, fibre delay line and picometre real-time motion control , 1996 .

[18]  W. Ni,et al.  Simulation of ASTROD I test mass charging due to solar energetic particles , 2007, 0704.3493.

[19]  Christopher W. Stubbs,et al.  Apache Point Observatory Lunar Laser-ranging Operation (APOLLO) , 2004 .

[20]  Xiaoli Sun,et al.  Two-Way Laser Link over Interplanetary Distance , 2006, Science.

[21]  Patrick Vrancken,et al.  TIME TRANSFER BY LASER LINK – THE T2L2 EXPERIMENT ON JASON-2 AND FURTHER EXPERIMENTS , 2008 .

[22]  John Ziemer,et al.  Colloid Microthrust Propulsion for the Space Technology 7 (ST7) and LISA Missions , 2006 .

[23]  W. Ni Mini-ASTROD --- Mini-Astrodynamical Space Test of Relativity using Optical Devices , 2003 .

[24]  Clifford M. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .

[25]  Diana N. Shaul,et al.  CHARGE MANAGEMENT FOR LISA AND LISA PATHFINDER , 2008 .

[26]  X. Newhall,et al.  Relativity parameters determined from lunar laser ranging. , 1996, Physical review. D, Particles and fields.

[27]  C. Grimani,et al.  Galactic and interplanetary cosmic rays relevant for LISA test‐mass charging , 2006 .

[28]  Harris,et al.  New tests of the universality of free fall. , 1994, Physical review. D, Particles and fields.

[29]  M. Fujimoto,et al.  Gravitational Wave Detection , 2007 .

[30]  A. Rüdiger,et al.  METHODS FOR ORBIT OPTIMIZATION FOR THE LISA GRAVITATIONAL WAVE OBSERVATORY , 2008 .

[31]  R. Reasenberg,et al.  The constancy of G and other gravitational experiments , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[32]  W. Ni,et al.  FURTHER TEST MASS CHARGING SIMULATIONS FOR ASTROD I , 2008 .

[33]  Orbit Design and Analysis for the Astrod Mission Concept , 2000 .

[34]  Wei-Tou Ni,et al.  ASTROD–AN OVERVIEW , 2002 .

[35]  Clive C. Speake,et al.  An interferometric sensor for satellite drag-free control , 2005 .

[36]  Ni Wei-tou,et al.  Testing Relativistic Gravity to One Part per Billion , 2008 .

[37]  W. Ni,et al.  PICO-WATT AND FEMTO-WATT WEAK-LIGHT PHASE LOCKING , 2002 .

[38]  John J. Degnan Laser Transponders for High-Accuracy Interplanetary Laser Ranging and Time Transfer , 2008 .

[39]  A. Rüdiger,et al.  COORBITAL RESTRICTED PROBLEM AND ITS APPLICATION IN THE DESIGN OF THE ORBITS OF THE LISA SPACECRAFT , 2008 .

[40]  W. Ni,et al.  Progress in laboratory research for fundamental physics space missions using optical devices , 2003 .