A Short Cut to Optimal Sequences

We propose a method of developing efficient programs for finding the optimal sequence, such as the maximum valued one among those that are acceptable. We introduce a method of deriving efficient algorithms from naive enumerate-and-choose-style ones. Our method is based on shortcut fusion, which is a program transformation for eliminating intermediate data structures passed between functions, and a set of auxiliary transformations. As an implementation of our method, we introduce a library for finding optimal sequences. The library consists of proposed transformations, together with functions useful to describe desirable sequences, so that naive enumerate-and-choose-style programs will be automatically improved.

[1]  Peter J. Stuckey,et al.  Automating branch-and-bound for dynamic programs , 2008, PEPM '08.

[2]  Janis Voigtländer,et al.  Concatenate, reverse and map vanish for free , 2002, ICFP '02.

[3]  Oege de Moor,et al.  Categories, relations and dynamic programming , 1994, Mathematical Structures in Computer Science.

[4]  Andrew John Gill,et al.  Cheap deforestation for non-strict functional languages , 1996 .

[5]  Craig A. Tovey,et al.  Automatic generation of linear-time algorithms from predicate calculus descriptions of problems on recursively constructed graph families , 1992, Algorithmica.

[6]  Robert Glück,et al.  Relating Accumulative and Non-accumulative Functional Programs , 2001, RTA.

[7]  森畑 明昌 研究会推薦博士論文速報:Calculational Approach to Automatic Algorithm Construction , 2009 .

[8]  Simon Peyton Jones,et al.  Playing by the rules: rewriting as a practical optimisation technique in GHC , 2001 .

[9]  Simon L. Peyton Jones,et al.  A short cut to deforestation , 1993, FPCA '93.

[10]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[11]  Akimasa Morihata A Short Cut to Optimal Sequences , 2009, APLAS.

[12]  R. Bellman Dynamic programming. , 1957, Science.

[13]  Yanhong A. Liu,et al.  Dynamic Programming via Static Incrementalization , 1999, High. Order Symb. Comput..

[14]  Norman H. Cohen Eliminating Redundant Recursive Calls. , 1983, TOPL.

[15]  Hans Zantema,et al.  Longest Segment Problems , 1992, Sci. Comput. Program..

[16]  Yanhong A. Liu,et al.  Optimizing aggregate array computations in loops , 2005, TOPL.

[17]  Varmo Vene,et al.  Recursion Schemes for Dynamic Programming , 2006, MPC.

[18]  John Launchbury,et al.  Warm fusion: deriving build-catas from recursive definitions , 1995, FPCA '95.

[19]  Jon Louis Bentley,et al.  Programming pearls , 1987, CACM.

[20]  Guy E. Blelloch,et al.  Selective memoization , 2003, POPL '03.

[21]  Ronald L. Rivest,et al.  Introduction to Algorithms, Second Edition , 2001 .

[22]  Akimasa Morihata,et al.  Write it recursively: a generic framework for optimal path queries , 2008, ICFP.

[23]  Richard S. Bird Maximum marking problems , 2001, J. Funct. Program..

[24]  Shin-Cheng Mu Maximum segment sum is back: deriving algorithms for two segment problems with bounded lengths , 2008, PEPM '08.

[25]  Akihiko Takano,et al.  Shortcut deforestation in calculational form , 1995, FPCA '95.

[26]  Robert Giegerich,et al.  Implementing Algebraic Dynamic Programming in the Functional and the Imperative Programming Paradigm , 2002, MPC.

[27]  Wei-Ngan Chin,et al.  Redundant Call Elimination via Tupling , 2006, Fundam. Informaticae.

[28]  Philip Wadler,et al.  Theorems for free! , 1989, FPCA.

[29]  Olaf Chitil,et al.  Typer inference builds a short cut to deforestation , 1999, ICFP '99.

[30]  Mizuhito Ogawa,et al.  Maximum Marking Problems with Accumulative Weight Functions , 2005, ICTAC.

[31]  Akimasa Morihata,et al.  MATHEMATICAL ENGINEERING TECHNICAL REPORTS Solving Maximum Weighted-sum Problems for Free , 2009 .

[32]  Akihiko Takano,et al.  Tupling calculation eliminates multiple data traversals , 1997, ICFP '97.

[33]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[34]  Peyton Jones,et al.  Haskell 98 language and libraries : the revised report , 2003 .

[35]  Mizuhito Ogawa,et al.  Make it practical: a generic linear-time algorithm for solving maximum-weightsum problems , 2000, ICFP '00.

[36]  Robert Giegerich,et al.  A discipline of dynamic programming over sequence data , 2004, Sci. Comput. Program..

[37]  Oege de Moor A Generic Program for Sequential Decision Processes , 1995, PLILP.