Martingale transforms goodness-of-fit tests in regression models

This paper discusses two goodness-of-fit testing problems. The first problem pertains to fitting an error distribution to an assumed nonlinear parametric regression model, while the second pertains to fitting a parametric regression model when the error distribution is unknown. For the first problem the paper contains tests based on a certain martingale type transform of residual empirical processes. The advantage of this transform is that the corresponding tests are asymptotically distribution free. For the second problem the proposed asymptotically distribution free tests are based on innovation martingale transforms. A Monte Carlo study shows that the simulated level of the proposed tests is close to the asymptotic level for moderate sample sizes.

[1]  P. Bickel Efficient and Adaptive Estimation for Semiparametric Models , 1993 .

[2]  M. Boldin Estimation of the Distribution of Noise in an Autoregression Scheme , 1983 .

[3]  Ralph B. D'Agostino,et al.  Goodness-of-Fit-Techniques , 2020 .

[4]  An Hong-Zhi,et al.  A Kolmogorov-Smirnov type statistic with application to test for nonlinearity in time series , 1991 .

[5]  James Durbin,et al.  Components of Cramer-von Mises statistics. I , 1972 .

[6]  Clifford H. Spiegelman,et al.  Testing the Goodness of Fit of a Linear Model via Nonparametric Regression Techniques , 1990 .

[7]  J. Durbin Distribution theory for tests based on the sample distribution function , 1973 .

[8]  Grace Wahba,et al.  Testing the (Parametric) Null Model Hypothesis in (Semiparametric) Partial and Generalized Spline Models , 1988 .

[9]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[10]  Winfried Stute,et al.  Bootstrap Approximations in Model Checks for Regression , 1998 .

[11]  E. Khmaladze,et al.  Martingale Approach in the Theory of Goodness-of-Fit Tests , 1982 .

[12]  Lixing Zhu,et al.  Model checks for regression: an innovation process approach , 1998 .

[13]  Estate V. Khmaladze,et al.  Goodness of Fit Problem and Scanning Innovation Martingales , 1993 .

[14]  J. Hájek Local asymptotic minimax and admissibility in estimation , 1972 .

[15]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[16]  P. Sen,et al.  Theory of rank tests , 1969 .

[17]  Alʹbert Nikolaevich Shiri︠a︡ev,et al.  Statistics of random processes , 1977 .

[18]  H. Koul Asymptotics of some estimators and sequential residual empiricals in nonlinear time series , 1996 .

[19]  R. L. Eubank,et al.  Commonality of cusum, von Neumann and smoothing-based goodness-of-fit tests , 1993 .

[20]  James G. MacKinnon,et al.  Model Specification Tests and Artificial Regressions , 1992 .

[21]  H. Koul,et al.  Minimum distance regression model checking , 2004 .

[22]  William Alexander,et al.  Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.

[23]  Winfried Stute,et al.  Nonparametric model checks for regression , 1997 .

[24]  R. Loynes The Empirical Distribution Function of Residuals from Generalised Regression , 1980 .

[25]  E. Khmaladze,et al.  Calculation of noncrossing probabilities for Poisson processes and its corollaries , 2001, Advances in Applied Probability.

[26]  H. Koul Weighted empiricals and linear models , 1992 .

[27]  H. Koul,et al.  Weak Convergence of Randomly Weighted Dependent Residual Empiricals with Applications to Autoregression , 1994 .

[28]  Lixing Zhu,et al.  Model Checks for Generalized Linear Models , 2002 .

[29]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[30]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[31]  Roger Koenker,et al.  Inference for Quantile Regression , 2005 .

[32]  Hira L. Koul,et al.  Nonparametric model checks for time series , 1999 .

[33]  H. Koul A weak convergence result useful in robust autoregression , 1991 .