A comparison of three muscle pennation assumptions and their effect on isometric and isotonic force.

[1]  A. Hill The heat of shortening and the dynamic constants of muscle , 1938 .

[2]  J. Wells,et al.  Comparison of mechanical properties between slow and fast mammalian muscles , 1965, The Journal of physiology.

[3]  C. Gans,et al.  The functional significance of muscle architecture--a theoretical analysis. , 1965, Ergebnisse der Anatomie und Entwicklungsgeschichte.

[4]  A. Huxley,et al.  The variation in isometric tension with sarcomere length in vertebrate muscle fibres , 1966, The Journal of physiology.

[5]  R J Baskin,et al.  Volume change and pressure development in muscle during contraction. , 1967, The American journal of physiology.

[6]  P D Gollnick,et al.  Selective glycogen depletion in skeletal muscle fibres of man following sustained contractions , 1974, The Journal of physiology.

[7]  R. FitzHugh A model of optimal voluntary muscular control , 1977, Journal of mathematical biology.

[8]  V. Edgerton,et al.  Muscle architecture and force-velocity characteristics of cat soleus and medial gastrocnemius: implications for motor control. , 1980, Journal of neurophysiology.

[9]  Z. Muhl Active length‐tension relation and the effect of muscle pinnation on fiber lengthening , 1982, Journal of morphology.

[10]  R. Roy,et al.  Architecture of the hind limb muscles of cats: Functional significance , 1982, Journal of morphology.

[11]  V. Edgerton,et al.  Muscle architecture of the human lower limb. , 1983, Clinical orthopaedics and related research.

[12]  R. D. Woittiez,et al.  The Effect of Architecture On Skeletal Muscle Performance: a Simple Planimetric Model , 1983 .

[13]  R. D. Woittiez,et al.  A three‐dimensional muscle model: A quantified relation between form and function of skeletal muscles , 1984, Journal of morphology.

[14]  R. D. Woittiez,et al.  Notes On Planimetric and Three-Dimensional Muscle Models , 1984 .

[15]  G. Goldspink,et al.  Connective tissue changes and physical properties of developing and ageing skeletal muscle. , 1984, Journal of anatomy.

[16]  A. Magid,et al.  Myofibrils bear most of the resting tension in frog skeletal muscle. , 1985, Science.

[17]  D. Winter,et al.  Predictions of knee and ankle moments of force in walking from EMG and kinematic data. , 1985, Journal of biomechanics.

[18]  Michael R. Pierrynowski,et al.  A physiological model for the evaluation of muscular forces in human locomotion: theoretical aspects , 1985 .

[19]  M. Bobbert,et al.  A model of the human triceps surae muscle-tendon complex applied to jumping. , 1986, Journal of biomechanics.

[20]  E. Otten Concepts and Models of Functional Architecture in Skeletal Muscle , 1988, Exercise and sport sciences reviews.

[21]  F. Zajac Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. , 1989, Critical reviews in biomedical engineering.

[22]  G J van Ingen Schenau,et al.  Isokinetic plantar flexion: experimental results and model calculations. , 1990, Journal of biomechanics.