Classical solutions of fully nonlinear, convex, second‐order elliptic equations

[1]  Über die Hölderstetigkeit der zweiten Ableitungen der Lösungen nichtlinearer elliptischer Gleichungen , 1974 .

[2]  Neil S. Trudinger,et al.  Local estimates for subsolutions and supersolutions of general second order elliptic quasilinear equations , 1980 .

[3]  W. Wasow,et al.  On the Approximation of Linear Elliptic Differential Equations by Difference Equations with Positive Coefficients , 1952 .

[4]  L. Evans On solving certain nonlinear partial differential equations by accretive operator methods , 1980 .

[5]  P. Lions,et al.  Fully nonlinear second order elliptic equations with large zeroth order coefficient , 1981 .

[6]  O. A. Ladyzhenskai︠a︡,et al.  Linear and quasilinear elliptic equations , 1968 .

[7]  A. Ivanov A priori estimates for solutions of nonlinear second-order elliptic equations , 1978 .

[8]  A. Pogorelov The Minkowski multidimensional problem , 1978 .

[9]  Friedmar Schulz Innere Abschätzungen für Lösungen nichtlinearer elliptischer Differentialgleichungen zweiter Ordnung inn Variablen , 1979 .

[10]  Avner Friedman,et al.  Optimal stochastic switching and the Dirichlet problem for the Bellman equation , 1979 .

[11]  P. Lions Resolution analytique des problemes de Bellman-Dirichlet , 1981 .

[12]  Alain Bensoussan,et al.  Applications des Inequations Varia-tionnelles en Controle Stochastique , 1978 .

[13]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[14]  L. Evans,et al.  A variational inequality approach to the Bellman-Dirichlet equation for two elliptic operators , 1977 .

[15]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[16]  B. Gaveau Méthodes de contrôle optimal en analyse complexe. I. Résolution d'équations de Monge Ampère , 1977 .