Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization
暂无分享,去创建一个
[1] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[2] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[3] R. Temam,et al. Analyse convexe et problèmes variationnels , 1974 .
[4] László Lovász,et al. On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.
[5] Claus Richter,et al. Zur effektiven Lösung von booleschen, quadratischen Optimierungsproblemen , 1982 .
[6] Naum Zuselevich Shor,et al. Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.
[7] N. Z. Shor. Class of global minimum bounds of polynomial functions , 1987 .
[8] Alexander Schrijver,et al. Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..
[9] H. Wolkowicz,et al. A Recipe for Semide nite Relaxation for ( 0 , 1 )-Quadratic ProgrammingS , 1992 .
[10] Naum Z. Shor,et al. Dual estimates in multiextremal problems , 1992, J. Glob. Optim..
[11] J. Goffin,et al. Decomposition and nondifferentiable optimization with the projective algorithm , 1992 .
[12] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[13] C. Reeves. Modern heuristic techniques for combinatorial problems , 1993 .
[14] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[15] Franz Rendl,et al. Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.
[16] Franz Rendl,et al. A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..
[17] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[18] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[19] Satissed Now Consider. Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .
[20] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[21] Stefan Feltenmark,et al. Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..