Semidefinite Relaxations and Lagrangian Duality with Application to Combinatorial Optimization

We show that it is fruitful to dualize the integrality constraints in a combinatorial optimization problem. First, this reproduces the known SDP relaxations of the max-cut and max-stable problems. Then we apply the approach to general combinatorial problems. We show that the resulting duality gap is smaller than with the classical Lagrangian relaxation; we also show that linear constraints need a special treatment.

[1]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[2]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[3]  R. Temam,et al.  Analyse convexe et problèmes variationnels , 1974 .

[4]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[5]  Claus Richter,et al.  Zur effektiven Lösung von booleschen, quadratischen Optimierungsproblemen , 1982 .

[6]  Naum Zuselevich Shor,et al.  Minimization Methods for Non-Differentiable Functions , 1985, Springer Series in Computational Mathematics.

[7]  N. Z. Shor Class of global minimum bounds of polynomial functions , 1987 .

[8]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[9]  H. Wolkowicz,et al.  A Recipe for Semide nite Relaxation for ( 0 , 1 )-Quadratic ProgrammingS , 1992 .

[10]  Naum Z. Shor,et al.  Dual estimates in multiextremal problems , 1992, J. Glob. Optim..

[11]  J. Goffin,et al.  Decomposition and nondifferentiable optimization with the projective algorithm , 1992 .

[12]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[13]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[14]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[15]  Franz Rendl,et al.  Combining Semidefinite and Polyhedral Relaxations for Integer Programs , 1995, IPCO.

[16]  Franz Rendl,et al.  A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..

[17]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[18]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[19]  Satissed Now Consider Improved Approximation Algorithms for Maximum Cut and Satissability Problems Using Semideenite Programming , 1997 .

[20]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[21]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..