Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids.

[1]  Ki‐Hyun Kim,et al.  Synthesis and optimization of ceftriaxone-loaded solid lipid nanocarriers. , 2016, Chemistry and physics of lipids.

[2]  M. Dong,et al.  Synthetic ultra-long chain fatty acyl based amphiphilic lipids as a dual function excipient for the production of surfactant-free solid lipid nanoparticles (SF-SLNs): a physico-chemical study , 2016 .

[3]  Y. Omidi,et al.  Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems , 2016 .

[4]  P. Ballester,et al.  Solid lipid nanoparticles from amphiphilic calixpyrroles. , 2016, Journal of colloid and interface science.

[5]  O. Diat,et al.  Toward surfactant-free and water-free microemulsions. , 2015, Journal of colloid and interface science.

[6]  M. Dong,et al.  Biocatalytic synthesis of ultra-long-chain fatty acid sugar alcohol monoesters , 2015 .

[7]  R. Müller,et al.  Formulation of solid lipid nanoparticles (SLN): the value of different alkyl polyglucoside surfactants. , 2014, International journal of pharmaceutics.

[8]  F. Filippin-Monteiro,et al.  Influence of Surfactant and Lipid Type on the Physicochemical Properties and Biocompatibility of Solid Lipid Nanoparticles , 2014, International journal of environmental research and public health.

[9]  J. Weiss,et al.  Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. , 2014, Journal of colloid and interface science.

[10]  Giuseppina Raciti,et al.  FA-loaded lipid drug delivery systems: preparation, characterization and biological studies. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[11]  Mingshi Yang,et al.  Investigating the correlation between in vivo absorption and in vitro release of fenofibrate from lipid matrix particles in biorelevant medium. , 2014, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[12]  A. Bernkop‐Schnürch Nanocarrier systems for oral drug delivery: do we really need them? , 2013, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[13]  F. Carrière,et al.  In Vitro Digestion of the Self-Emulsifying Lipid Excipient Labrasol® by Gastrointestinal Lipases and Influence of its Colloidal Structure on Lipolysis Rate , 2013, Pharmaceutical Research.

[14]  Kapil Chaudhary,et al.  Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled , 2012, Acta pharmaceutica.

[15]  A. Elaissari,et al.  Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. , 2011, Advances in colloid and interface science.

[16]  José Juan Escobar-Chávez,et al.  Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method , 2010, International journal of nanomedicine.

[17]  J. Benoit,et al.  Lipid nanocapsules: a new platform for nanomedicine. , 2009, International journal of pharmaceutics.

[18]  D. Mcclements,et al.  Impact of surfactant properties on oxidative stability of beta-carotene encapsulated within solid lipid nanoparticles. , 2009, Journal of agricultural and food chemistry.

[19]  N. Mishra,et al.  Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. , 2009, Nanomedicine : nanotechnology, biology, and medicine.

[20]  D. Mcclements,et al.  Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). , 2009, Journal of colloid and interface science.

[21]  F. Caruso,et al.  Degradable, Surfactant‐Free, Monodisperse Polymer‐Encapsulated Emulsions as Anticancer Drug Carriers , 2009 .

[22]  T. Sakai Surfactant-free emulsions , 2008 .

[23]  Paul E. West,et al.  A comparison of atomic force microscopy (AFM) and dynamic light scattering (DLS) methods to characterize nanoparticle size distributions , 2008 .

[24]  T. Delair,et al.  Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[25]  R. Gurny,et al.  Preparation of surfactant-free nanoparticles of methacrylic acid copolymers used for film coating , 2006, AAPS PharmSciTech.

[26]  Zongming Rong,et al.  Calculation of hydrophile-lipophile balance for polyethoxylated surfactants by group contribution method. , 2006, Journal of colloid and interface science.

[27]  M. Üner Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): their benefits as colloidal drug carrier systems. , 2006, Die Pharmazie.

[28]  S. Adachi,et al.  Surface tensions of aqueous solutions of 1-O-monoacyl sugar alcohols , 2006 .

[29]  R. Müller,et al.  Influence of surfactants on the physical stability of solid lipid nanoparticle (SLN) formulations. , 2004, Die Pharmazie.

[30]  H. Bunjes,et al.  Influence of emulsifiers on the crystallization of solid lipid nanoparticles. , 2003, Journal of pharmaceutical sciences.

[31]  R. Müller,et al.  Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. , 2002, Advanced drug delivery reviews.

[32]  R. Müller,et al.  Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN)--effect of surfactants, storage time and crystallinity. , 2002, International journal of pharmaceutics.

[33]  R. Müller,et al.  Enzymatic Degradation of Dynasan 114 SLN – Effect of Surfactants and Particle Size , 2002 .

[34]  M. Ferrer,et al.  Comparative surface activities of di- and trisaccharide fatty acid esters , 2002 .

[35]  R. Müller,et al.  Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. , 2001, International journal of pharmaceutics.

[36]  R. Müller,et al.  Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. , 2000, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[37]  R. Müller,et al.  Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. , 1999, International journal of pharmaceutics.

[38]  W. Mehnert,et al.  Atomic Force Microscopy Studies of Solid Lipid Nanoparticles , 1996, Pharmaceutical Research.

[39]  Mingshi Yang,et al.  Lipophilic prodrugs of apomorphine I: preparation, characterisation, and in vitro enzymatic hydrolysis in biorelevant media. , 2015, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[40]  R. Gurny,et al.  New approach for the preparation of nanoparticles by an emulsification-diffusion method , 1995 .

[41]  M. Lawrence,et al.  Surfactant systems: their use in drug delivery , 1994 .