Consumer Uncertainty and Purchase Decision Reversals: Theory and Evidence

This research examines how prepurchase information that reduces consumer uncertainty about a product or service can affect consumer decisions to reverse an initial product purchase or service enrollment decision. One belief commonly held by retailers is that provision of greater amounts of information before the purchase reduces decision reversals. We provide theory and evidence showing conditions under which uncertainty-reducing information provided before the purchase decision can actually increase the number of decision reversals. Predictions generated from an analytical model of consumer behavior incorporating behavioral theory of reference-dependence are complemented by empirical evidence from both a controlled behavioral experiment and econometric analysis of archival data. Combined, the theory and evidence suggest that managers should be aware that their information provision decisions taken to reduce decision reversals may actually increase them. Data, as supplemental material, are available at http://dx.doi.org/10.1287/mksc.2015.0906 .

[1]  D. Kahneman,et al.  Functional Imaging of Neural Responses to Expectancy and Experience of Monetary Gains and Losses tasks with monetary payoffs , 2001 .

[2]  Ganesh Iyer,et al.  Competition in Consumer Shopping Experience , 2012, Mark. Sci..

[3]  Subramanian Balachander,et al.  Warranty Signalling and Reputation , 2001, Manag. Sci..

[4]  Silvana Tenreyro,et al.  The Log of Gravity , 2004 .

[5]  R. Bucklin,et al.  Reference Effects of Price and Promotion on Brand Choice Behavior , 1989 .

[6]  Steven M. Shugan,et al.  Electronic Tickets, Smart Cards, and Online Prepayments: When and How to Advance Sell , 2001 .

[7]  Henry S. F rber Reference-Dependent Preferences and Labor Supply: The Case of New York City Taxi Drivers , 2016 .

[8]  Stephen L. Morgan,et al.  Instrumental Variables Regression , 2014 .

[9]  Silvana Tenreyro,et al.  Further Simulation Evidence on the Performance of the Poisson Pseudo-Maximum Likelihood Estimator , 2011 .

[10]  Animesh Animesh,et al.  Durable Products with Multiple Used Goods Markets: Product Upgrade and Retail Pricing Implications , 2010, Mark. Sci..

[11]  Carrie M. Heilman,et al.  The Evolution of Brand Preferences and Choice Behaviors of Consumers New to a Market , 2000 .

[12]  Preyas S. Desai,et al.  Enabling the Willing: Consumer Rebates for Durable Goods , 2006 .

[13]  Zsolt Katona,et al.  "Bricks and Clicks": The Impact of Product Returns on the Strategies of Multichannel Retailers , 2011, Mark. Sci..

[14]  Gérard P. Cachon Supply Chain Coordination with Contracts , 2003, Supply Chain Management.

[15]  Scott M. Davis,et al.  Money back guarantees in retailing: matching products to consumer tastes , 1995 .

[16]  Juanjuan Zhang,et al.  Designing Pricing Contracts for Boundedly Rational Customers: Does the Framing of the Fixed Fee Matter? , 2008, Manag. Sci..

[17]  Jeffrey D. Shulman,et al.  Optimal Restocking Fees and Information Provision in an Integrated Demand-Supply Model of Product Returns , 2009, Manuf. Serv. Oper. Manag..

[18]  Wujin Chu,et al.  Controlling product returns in direct marketing , 1996 .

[19]  Noah Lim,et al.  Reference-Dependence in Multi-Location Newsvendor Models: A Structural Analysis , 2010 .

[20]  E. Anderson,et al.  The Antecedents and Consequences of Customer Satisfaction for Firms , 1993 .

[21]  C. Gourieroux,et al.  Pseudo Maximum Likelihood Methods: Applications to Poisson Models , 1984 .

[22]  Gilvan C. Souza,et al.  Supply Chain Coordination for False Failure Returns , 2006, Manuf. Serv. Oper. Manag..

[23]  Wendy Schneier Siegal,et al.  The Impact of the Prechoice Process on Product Returns , 2005 .

[24]  J. S. Silva,et al.  Endogeneity in Count Data Models: An Application to Demand for Health Care , 1997 .

[25]  Stacy L. Wood Remote Purchase Environments: The Influence of Return Policy Leniency on Two-Stage Decision Processes , 2001 .

[26]  Yuxin Chen,et al.  Context-Dependent Preferences and Innovation Strategy , 2013, Manag. Sci..

[27]  Noah Lim,et al.  Designing Price Contracts for Boundedly Rational Customers: Does the Number of Blocks Matter? , 2007, Marketing Science.

[28]  A. Coughlan,et al.  Used goods, not used bads: Profitable secondary market sales for a durable goods channel , 2007 .

[29]  Jeffrey D. Shulman,et al.  Managing Consumer Returns in a Competitive Environment , 2011, Manag. Sci..

[30]  Wilfred Amaldoss,et al.  Conspicuous Consumption and Sophisticated Thinking , 2005, Manag. Sci..

[31]  Preyas S. Desai Leasing and Selling: Optimal Marketing Strategies for a Durable Goods Firm (Лизинг и продажи: оптимальные маркетинговые стратегии для изготовителя товаров длительного пользования) , 1998 .

[32]  Raghunath Singh Rao,et al.  Is that Deal Worth my Time? The Interactive Effect of Relative and Referent Thinking on Willingness to Seek a Bargain , 2010 .

[33]  Ying Xie,et al.  Facilitating Fit Revelation in the Competitive Market , 2013, Manag. Sci..

[34]  AnimeshAnimesh,et al.  Durable Products with Multiple Used Goods Markets , 2010 .

[35]  Bruce G. S. Hardie,et al.  Modeling Loss Aversion and Reference Dependence Effects on Brand Choice , 1993 .

[36]  Wilfred Amaldoss,et al.  Reference Groups and Product Line Decisions: An Experimental Investigation of Limited Editions and Product Proliferation , 2010, Manag. Sci..

[37]  Michael R. Hagerty,et al.  Return Policies and the Optimal Level of "Hassle" , 1998 .

[38]  Jinhong Xie,et al.  Service Escape: Profiting from Customer Cancellations , 2007 .

[39]  Stephen J. Hoch,et al.  Consumer Learning: Advertising and the Ambiguity of Product Experience , 1986 .

[40]  A. Tversky,et al.  Prospect Theory : An Analysis of Decision under Risk Author ( s ) : , 2007 .

[41]  Chakravarthi Narasimhan,et al.  Differentiate or Imitate? The Role of Context-Dependent Preferences , 2013, Mark. Sci..

[42]  J. Stock,et al.  Instrumental Variables Regression with Weak Instruments , 1994 .

[43]  Karsten Hansen,et al.  The Option Value of Returns: Theory and Empirical Evidence , 2009, Mark. Sci..

[44]  Saibal Ray,et al.  Returns Policies Between Channel Partners for Durable Products , 2013, Mark. Sci..

[45]  Christopher F. Baum An Introduction to Modern Econometrics Using Stata , 2006 .

[46]  Preyas S. Desai,et al.  When Old is Gold: The Role of Business Longevity in Risky Situations: , 2002 .

[47]  Colin Camerer,et al.  Modeling the Psychology of Consumer and Firm Behavior with Behavioral Economics , 2006, Journal of Marketing Research.

[48]  K. Srinivasan,et al.  Signaling Quality with a Money-Back Guarantee: The Role of Transaction Costs , 1995 .

[49]  Wujin Chu,et al.  Managing Dissatisfaction , 1998 .

[50]  Steven M. Shugan,et al.  Advance-selling as a competitive marketing tool ☆ , 2005 .

[51]  G. Urban,et al.  You have printed the following article : Modeling Multiattribute Utility , Risk , and Belief Dynamics for New Consumer Durable Brand Choice , 2007 .

[52]  Jeffrey D. Shulman,et al.  Optimal Reverse Channel Structure for Consumer Product Returns , 2010, Mark. Sci..

[53]  Liang Guo,et al.  Service Cancellation and Competitive Refund Policy , 2009, Mark. Sci..

[54]  Chris Janiszewski,et al.  The Influence of Price Discount Framing on the Evaluation of a Product Bundle , 2004 .

[55]  Preyas S. Desai,et al.  Strategic Decentralization and Channel Coordination , 2004 .

[56]  M. Rabin,et al.  A Model of Reference-Dependent Preferences , 2006 .

[57]  Dmitri Kuksov,et al.  Information Provision in a Vertically Differentiated Competitive Marketplace , 2010, Mark. Sci..

[58]  Yunchuan Liu,et al.  Consumer Fit Search, Retailer Shelf Layout, and Channel Interaction , 2013, Mark. Sci..

[59]  Tony Haitao Cui,et al.  Fairness Ideals in Distribution Channels , 2016 .

[60]  I. Ritov,et al.  Emotion-based choice , 1999 .

[61]  Yeon-Koo Che Customer Return Policies for Experience Goods , 1996 .

[62]  A. Yesim Orhun,et al.  Optimal Product Line Design When Consumers Exhibit Choice Set-Dependent Preferences , 2009, Mark. Sci..

[63]  Silvana Tenreyro,et al.  On the existence of the maximum likelihood estimates for Poisson regression , 2010 .