Automatic Background Knowledge Selection for Matching Biomedical Ontologies

Ontology matching is a growing field of research that is of critical importance for the semantic web initiative. The use of background knowledge for ontology matching is often a key factor for success, particularly in complex and lexically rich domains such as the life sciences. However, in most ontology matching systems, the background knowledge sources are either predefined by the system or have to be provided by the user. In this paper, we present a novel methodology for automatically selecting background knowledge sources for any given ontologies to match. This methodology measures the usefulness of each background knowledge source by assessing the fraction of classes mapped through it over those mapped directly, which we call the mapping gain. We implemented this methodology in the AgreementMakerLight ontology matching framework, and evaluate it using the benchmark biomedical ontology matching tasks from the Ontology Alignment Evaluation Initiative (OAEI) 2013. In each matching problem, our methodology consistently identified the sources of background knowledge that led to the highest improvements over the baseline alignment (i.e., without background knowledge). Furthermore, our proposed mapping gain parameter is strongly correlated with the F-measure of the produced alignments, thus making it a good estimator for ontology matching techniques based on background knowledge.

[1]  Heiner Stuckenschmidt,et al.  Results of the Ontology Alignment Evaluation Initiative , 2007 .

[2]  Jérôme David,et al.  Matching directories and OWL ontologies with AROMA , 2006, CIKM '06.

[3]  Erhard Rahm,et al.  Effective Mapping Composition for Biomedical Ontologies , 2012 .

[4]  Enrico Motta,et al.  Exploring the Semantic Web as Background Knowledge for Ontology Matching , 2008, J. Data Semant..

[5]  Cosmin Stroe,et al.  Using AgreementMaker to align ontologies for OAEI 2010 , 2010, OM.

[6]  Olivier Bodenreider,et al.  The Unified Medical Language System (UMLS): integrating biomedical terminology , 2004, Nucleic Acids Res..

[7]  Emanuel Santos,et al.  What's in a 'nym'? Synonyms in Biomedical Ontology Matching , 2013, SEMWEB.

[8]  Cosmin Stroe,et al.  AgreementMaker: Efficient Matching for Large Real-World Schemas and Ontologies , 2009, Proc. VLDB Endow..

[9]  Patrick Lambrix,et al.  SAMBO - A system for aligning and merging biomedical ontologies , 2006, J. Web Semant..

[10]  Jérôme Euzenat,et al.  Ontology Matching: State of the Art and Future Challenges , 2013, IEEE Transactions on Knowledge and Data Engineering.

[11]  Ian Horrocks,et al.  LogMap and LogMapLt results for OAEI 2012 , 2012, OM.

[12]  Zohra Bellahsene,et al.  YAM++ : A Multi-strategy Based Approach for Ontology Matching Task , 2012, EKAW.

[13]  Viviana Mascardi,et al.  Automatic Ontology Matching via Upper Ontologies: A Systematic Evaluation , 2010, IEEE Transactions on Knowledge and Data Engineering.

[14]  Jérôme Euzenat,et al.  Ontology Matching, Second Edition , 2013 .

[15]  Mansur R. Kabuka,et al.  ASMOV Results for OAEI 2007 , 2007, OM.

[16]  Frank van Harmelen,et al.  Ontology matching using comprehensive ontology as background knowledge , 2006 .

[17]  Jin-Dong Kim,et al.  Visual Presentation of Mappings Between Biomedical Ontologies , 2012, SWAT4LS.

[18]  Emanuel Santos,et al.  The AgreementMakerLight Ontology Matching System , 2013, OTM Conferences.

[19]  Olivier Bodenreider,et al.  Bio-ontologies: current trends and future directions , 2006, Briefings Bioinform..

[20]  Isabel F. Cruz,et al.  Semantic Data Integration in Hierarchical Domains , 2003, IEEE Intell. Syst..

[21]  Philip A. Bernstein,et al.  Model management 2.0: manipulating richer mappings , 2007, SIGMOD '07.

[22]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[23]  Olivier Bodenreider,et al.  Alignment of Multiple Ontologies of Anatomy: Deriving Indirect Mappings from Direct Mappings to a Reference , 2005, AMIA.

[24]  Angela Maduko,et al.  Using AgreementMaker to align Ontologies for OAEI 2009: Overview, Results, and Outlook , 2009, OM.

[25]  Erhard Rahm,et al.  Mapping Composition for Matching Large Life Science Ontologies , 2011, ICBO.

[26]  Christopher G. Chute,et al.  BioPortal: ontologies and integrated data resources at the click of a mouse , 2009, Nucleic Acids Res..

[27]  Daniel L. Rubin,et al.  Biomedical ontologies: a functional perspective , 2007, Briefings Bioinform..

[28]  Heiner Stuckenschmidt,et al.  Results of the Ontology Alignment Evaluation Initiative 2007 , 2006, OM.

[29]  Erhard Rahm,et al.  GOMMA: a component-based infrastructure for managing and analyzing life science ontologies and their evolution , 2011, J. Biomed. Semant..

[30]  Erhard Rahm,et al.  GOMMA results for OAEI 2012 , 2012, OM.

[31]  Enrico Motta,et al.  Solving Semantic Ambiguity to Improve Semantic Web based Ontology Matching , 2007, OM.

[32]  J. Euzenat,et al.  Ontology Matching , 2007, Springer Berlin Heidelberg.

[33]  Christoph Quix,et al.  Automatic selection of background knowledge for ontology matching , 2011, SWIM '11.

[34]  Bob Keller What's in a 'NYM? , 2013, Microscopy Today.

[35]  Tom M. Mitchell,et al.  PIDGIN: ontology alignment using web text as interlingua , 2013, CIKM.

[36]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[37]  Frank van Harmelen,et al.  Exploiting the structure of background knowledge used , 2006 .

[38]  Andrew B. Whinston,et al.  Model management , 1994 .

[39]  Amit P. Sheth,et al.  Ontology Alignment for Linked Open Data , 2010, SEMWEB.

[40]  Zohra Bellahsene,et al.  YAM++ results for OAEI 2011 , 2011, OM.

[41]  Isabel F. Cruz,et al.  AgreementMakerLight results for OAEI 2013 , 2013, OM.

[42]  Bernardo Cuenca Grau,et al.  LogMap 2.0: towards logic-based, scalable and interactive ontology matching , 2011, SWAT4LS.