Multiple-true-false questions reveal more thoroughly the complexity of student thinking than multiple-choice questions: a Bayesian item response model comparison

[1]  Alison J Crowe,et al.  Phys-MAPS: a programmatic physiology assessment for introductory and advanced undergraduates. , 2019, Advances in physiology education.

[2]  Alison J Crowe,et al.  GenBio-MAPS: A Programmatic Assessment to Measure Student Understanding of Vision and Change Core Concepts across General Biology Programs , 2019, CBE life sciences education.

[3]  B. Couch,et al.  Multiple–True–False Questions Reveal the Limits of the Multiple–Choice Format for Detecting Students with Incomplete Understandings , 2018 .

[4]  Alison J Crowe,et al.  EcoEvo-MAPS: An Ecology and Evolution Assessment for Introductory through Advanced Undergraduates , 2018, CBE life sciences education.

[5]  Joanna K. Hubbard,et al.  The positive effect of in-class clicker questions on later exams depends on initial student performance level but not question format , 2018, Comput. Educ..

[6]  Tova Stenlund,et al.  Group differences in test-taking behaviour: an example from a high-stakes testing program , 2017 .

[7]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[8]  Dina L. Newman,et al.  Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool , 2016, CBE life sciences education.

[9]  Brian A. Couch,et al.  The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students , 2015, CBE life sciences education.

[10]  Matthew Pilarz,et al.  Research-Based Implementation of Peer Instruction: A Literature Review , 2015, CBE life sciences education.

[11]  Leila Javid,et al.  The Comparison between Multiple-choice (MC) and Multiple True-false (MTF) Test Formats in Iranian Intermediate EFL Learners’ Vocabulary Learning , 2014 .

[12]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[13]  Gülnur Birol,et al.  Development of a Meiosis Concept Inventory , 2013, CBE life sciences education.

[14]  G. Camilli,et al.  Comment on 3PL IRT Adjustment for Guessing , 2013 .

[15]  Susan R. Singer,et al.  Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering. , 2012 .

[16]  Gail Richmond,et al.  Exploring Undergraduates' Understanding of Photosynthesis Using Diagnostic Question Clusters , 2012, CBE life sciences education.

[17]  Wendy K. Adams,et al.  Development and Validation of Instruments to Measure Learning of Expert‐Like Thinking , 2011 .

[18]  Jean-Paul Fox,et al.  Bayesian Item Response Modeling , 2010 .

[19]  De Ayala,et al.  The Theory and Practice of Item Response Theory , 2008 .

[20]  Jennifer K Knight,et al.  The Genetics Concept Assessment: a new concept inventory for gauging student understanding of genetics. , 2008, CBE life sciences education.

[21]  Ross H. Nehm,et al.  Measuring knowledge of natural selection: A comparison of the CINS, an open‐response instrument, and an oral interview , 2008 .

[22]  J. Paruelo,et al.  How to evaluate models : Observed vs. predicted or predicted vs. observed? , 2008 .

[23]  R. Nehm,et al.  Biology Majors' Knowledge and Misconceptions of Natural Selection , 2007 .

[24]  P. Gustafson,et al.  Conservative prior distributions for variance parameters in hierarchical models , 2006 .

[25]  A. Dudley Multiple dichotomous-scored items in second language testing: investigating the multiple true-false item type under norm-referenced conditions , 2006 .

[26]  Derek C. Briggs,et al.  Diagnostic Assessment With Ordered Multiple-Choice Items , 2006 .

[27]  P. Black,et al.  Developing the theory of formative assessment , 2009 .

[28]  D. Frisbie The Multiple True‐False Item Format: A Status Review , 2005 .

[29]  Michael C. Rodriguez Three Options Are Optimal for Multiple‐Choice Items: A Meta‐Analysis of 80 Years of Research , 2005 .

[30]  B. Frey,et al.  Item-writing rules: Collective wisdom , 2005 .

[31]  W. Wood Clickers: A Teaching Gimmick that Works , 2004 .

[32]  Frank B. Baker,et al.  Item Response Theory : Parameter Estimation Techniques, Second Edition , 2004 .

[33]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[34]  C. Ávila,et al.  Personality, expectations, and response strategies in multiple‐choice question examinations in university students: a test of Gray's hypotheses , 2004 .

[35]  Aleksander P. J. Ellis,et al.  Race and Cognitive‐Ability Test Performance: The Mediating Effects of Test Preparation, Test‐Taking Strategy Use and Self‐Eff icacy , 2003 .

[36]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[37]  Richard F Burton,et al.  Misinformation, partial knowledge and guessing in true/false tests , 2002, Medical education.

[38]  Michael C. Rodriguez,et al.  A Review of Multiple-Choice Item-Writing Guidelines for Classroom Assessment , 2002 .

[39]  Mousa Alnabhan,et al.  An Empirical Investigation of the Effects of Three Methods of Handling Guessing and Risk Taking on the Psychometric Indices of a Test , 2002 .

[40]  Allan S. Cohen,et al.  A Mixture Item Response Model for Multiple-Choice Data , 2001 .

[41]  E. Mazur,et al.  Peer Instruction: Ten years of experience and results , 2001 .

[42]  Thomas A. Angelo,et al.  Classroom Assessment and Research: An Update on Uses Approaches, and Research Findings , 1998 .

[43]  M. Pomplun,et al.  Multiple-Mark Items: An Alternative Objective Item Format? , 1997 .

[44]  Robert J. Crutcher,et al.  The role of deliberate practice in the acquisition of expert performance. , 1993 .

[45]  F. Baker,et al.  Item response theory : parameter estimation techniques , 1993 .

[46]  E. Goetz,et al.  Strategic processing of test questions: The test marking responses of college students , 1993 .

[47]  D. Hestenes,et al.  Force concept inventory , 1992 .

[48]  R. Hambleton,et al.  Fundamentals of Item Response Theory , 1991 .

[49]  D. Frisbie,et al.  Effectiveness of Multiple True-False Items , 1989 .

[50]  D. Thissen,et al.  Multiple-Choice Models: The Distractors Are also Part of the Item. , 1989 .

[51]  Robert B. Frary,et al.  Formula Scoring of Multiple‐Choice Tests (Correction for Guessing) , 1988 .

[52]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[53]  D. Frisbie,et al.  THE RELATIVE MERITS OF MULTIPLE TRUE‐FALSE ACHIEVEMENT TESTS , 1982 .

[54]  James J. Diamond,et al.  The Correction for Guessing1 , 1973 .

[55]  R. Darrell Bock Estimating item parameters and latent ability when responses are scored in two or more nominal categories , 1972 .

[56]  C. Hansel Scientific Teaching , 1972, Nature.

[57]  L. Cronbach An experimental comparison of the multiple true-false and multiple multiple-choice tests. , 1941 .