Coupled numerical simulation of liquid sloshing dampers and wind–structure simulation model

[1]  S. Laflamme,et al.  Ensemble of long short-term memory recurrent neural network for semi-active control of tuned liquid wall damper , 2022, Engineering Structures.

[2]  F. Ubertini,et al.  Enhanced energy dissipation through 3D printed bottom geometry in Tuned Sloshing Dampers , 2021, Journal of Fluids and Structures.

[3]  J. Peiró,et al.  Smooth particle hydrodynamics simulations of long-duration violent three-dimensional sloshing in tanks , 2021, Ocean Engineering.

[4]  G. Morgenthal,et al.  Data-driven Aerodynamic Analysis of Structures using Gaussian Processes , 2021, Journal of Wind Engineering and Industrial Aerodynamics.

[5]  Ahsan Kareem,et al.  Comparison Metrics for Time-Histories: Application to Bridge Aerodynamics , 2020 .

[6]  Ahsan Kareem,et al.  Hybrid simulation of a tall building with a double‐decker tuned sloshing damper system under wind loads , 2020, The Structural Design of Tall and Special Buildings.

[7]  G Morgenthal,et al.  A categorical perspective towards aerodynamic models for aeroelastic analyses of bridge decks , 2019, Royal Society Open Science.

[8]  G. Morgenthal,et al.  Aeroelastic analyses of bridges using a Pseudo-3D vortex method and velocity-based synthetic turbulence generation , 2018, Engineering Structures.

[9]  G. Morgenthal,et al.  A synergistic study of a CFD and semi-analytical models for aeroelastic analysis of bridges in turbulent wind conditions , 2018, Journal of Fluids and Structures.

[10]  B. Basu,et al.  Analysis of tuned liquid column damper nonlinearities , 2018, Engineering Structures.

[11]  Guido Morgenthal,et al.  A Comparative Assessment of Aerodynamic Models for Buffeting and Flutter of Long-Span Bridges , 2017 .

[12]  Guido Morgenthal,et al.  Methods for flutter stability analysis of long-span bridges: a review , 2017 .

[13]  Wei Bai,et al.  Numerical simulation of coupling effect between ship motion and liquid sloshing under wave action , 2015 .

[14]  Stephen M. Longshaw,et al.  DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) , 2015, Comput. Phys. Commun..

[15]  Leo M. González,et al.  Two phase analysis of sloshing in a rectangular container with Volume of Fluid (VOF) methods , 2013 .

[16]  Lap-Loi Chung,et al.  Semi-active tuned mass dampers with phase control , 2013 .

[17]  Ozden Turan,et al.  A study of Sloshing Absorber Geometry for Structural Control with SPH , 2011 .

[18]  Haifan Xiang,et al.  An efficient ergodic simulation of multivariate stochastic processes with spectral representation , 2011 .

[19]  Lap-Loi Chung,et al.  Optimal design theories of tuned mass dampers with nonlinear viscous damping , 2009 .

[20]  Suad Jakirlić,et al.  Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Andrew Y. T. Leung,et al.  Particle swarm optimization of tuned mass dampers , 2009 .

[22]  S. Turnock,et al.  Multiphase CFD modelling of a lateral sloshing tank , 2009 .

[23]  Michael Tait,et al.  Equivalent mechanical models of tuned liquid dampers with different tank geometries , 2008 .

[24]  Charles H. K. Williamson,et al.  A brief review of recent results in vortex-induced vibrations , 2008 .

[25]  Guido Morgenthal,et al.  An immersed interface method for the vortex-in-cell algorithm , 2007 .

[26]  H. Akyıldız,et al.  Sloshing in a three-dimensional rectangular tank: Numerical simulation and experimental validation , 2006 .

[27]  Yukio Tamura,et al.  Evaluation perception of wind-induced vibration in buildings , 2006 .

[28]  Dorothy Reed,et al.  A non‐linear numerical model of the tuned liquid damper , 1999 .

[29]  Hrvoje Jasak,et al.  A tensorial approach to computational continuum mechanics using object-oriented techniques , 1998 .

[30]  T. T. Soong,et al.  Parametric study and simplified design of tuned mass dampers , 1998 .

[31]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[32]  Bijan Samali,et al.  Performance of tuned mass dampers under wind loads , 1995 .

[33]  Yozo Fujino,et al.  The properties of tuned liquid dampers using a TMD analogy , 1995 .

[34]  Yozo Fujino,et al.  A semi-analytical model for tuned liquid damper (TLD) with wave breaking , 1994 .

[35]  W. H. Melbourne,et al.  Accelerations and comfort criteria for buildings undergoing complex motions , 1992 .

[36]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[37]  R. Scanlan,et al.  Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks , 1991 .

[38]  G. Housner The dynamic behavior of water tanks , 1963 .

[39]  Andrea Luigi Facci,et al.  Experimental and numerical analysis of energy dissipation in a sloshing absorber , 2017 .

[40]  G. Solari,et al.  Probabilistic 3-D turbulence modeling for gust buffeting of structures , 2001 .

[41]  H. Sockel,et al.  Wind-excited vibrations of structures , 1994 .

[42]  Chan Ghee Koh,et al.  Theoretical and experimental studies on rectangular liquid dampers under arbitrary excitations , 1994 .

[43]  Yukio Tamura,et al.  Practical application of nutation damper for suppressing wind-induced vibrations of airport towers , 1992 .

[44]  Kozo Fujii,et al.  Suppression of wind-induced vibration of a tall building using Tuned Liquid Damper , 1992 .

[45]  Ahsan Kareem,et al.  Reduction of wind induced motion utilizing a tuned sloshing damper , 1990 .

[46]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .