A general framework for low level vision

We introduce a new geometrical framework based on which natural flows for image scale space and enhancement are presented. We consider intensity images as surfaces in the (x, I) space. The image is, thereby, a two-dimensional (2-D) surface in three-dimensional (3-D) space for gray-level images, and 2-D surfaces in five dimensions for color images. The new formulation unifies many classical schemes and algorithms via a simple scaling of the intensity contrast, and results in new and efficient schemes. Extensions to multidimensional signals become natural and lead to powerful denoising and scale space algorithms.

[1]  Physics Letters , 1962, Nature.

[2]  P. Concus Numerical solution of the minimal surface equation , 1967 .

[3]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[4]  R. Temam,et al.  Pseudosolutions of the time-dependent minimal surface problem , 1978 .

[5]  Claus Gerhardt Evolutionary Surfaces of Prescribed Mean Curvature , 1980 .

[6]  A. Polyakov Quantum Geometry of Bosonic Strings , 1981 .

[7]  W. Eric L. Grimson,et al.  From images to surfaces , 1981 .

[8]  K. Ecker Estimates for evolutionary surfaces of prescribed mean curvature , 1982 .

[9]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[10]  G. Huisken,et al.  Mean curvature evolution of entire graphs , 1989 .

[11]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[13]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[14]  James A. Sethian,et al.  Flow under Curvature: Singularity Formation, Minimal Surfaces, and Geodesics , 1993, Exp. Math..

[15]  D. Chopp Computing Minimal Surfaces via Level Set Curvature Flow , 1993 .

[16]  V. Oliker,et al.  Evolution of nonparametric surfaces with speed depending on curvature II. The mean curvature case , 1993 .

[17]  Antonin Chambolle,et al.  Partial differential equations and image processing , 1994, Proceedings of 1st International Conference on Image Processing.

[18]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[19]  Jean-Michel Morel,et al.  Morphological Approach to Multiscale Analysis: From Principles to Equations , 1994, Geometry-Driven Diffusion in Computer Vision.

[20]  Max A. Viergever,et al.  Nonlinear scale-space , 1995, Image Vis. Comput..

[21]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[22]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[23]  Gary E. Ford,et al.  Invariance of edges and corners under mean-curvature diffusions of images , 1995, Electronic Imaging.

[24]  Anthony J. Yezzi,et al.  Gradient flows and geometric active contour models , 1995, Proceedings of IEEE International Conference on Computer Vision.

[25]  R. Kimmel,et al.  On the Geometry of Texture , 1996 .

[26]  James A. Sethian,et al.  Image Processing: Flows under Min/Max Curvature and Mean Curvature , 1996, CVGIP Graph. Model. Image Process..

[27]  Guillermo Sapiro,et al.  Anisotropic diffusion of multivalued images with applications to color filtering , 1996, IEEE Trans. Image Process..

[28]  Jayant Shah,et al.  A common framework for curve evolution, segmentation and anisotropic diffusion , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[30]  Joyant Shah,et al.  Curve evolution and segmentation functionals: application to color images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[31]  Guillermo Sapiro,et al.  Vector-valued active contours , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Ron Kimmel,et al.  Intrinsic Scale Space for Images on Surfaces: The Geodesic Curvature Flow , 1997, CVGIP Graph. Model. Image Process..

[33]  Ron Kimmel,et al.  From High Energy Physics to Low Level Vision , 1997, Scale-Space.

[34]  Ron Kimmel What is a Natural Norm for Multi Channel Image Processing , 1997 .

[35]  Ron Kimmel,et al.  Images as embedding maps and minimal surfaces: movies, color, and volumetric medical images , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[36]  R. Kimmel,et al.  Minimal surfaces: a geometric three dimensional segmentation approach , 1997 .

[37]  Guillermo Sapiro,et al.  Minimal Surfaces Based Object Segmentation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Ron Kimmel,et al.  A Natural Norm for Color Processing , 1998, ACCV.

[39]  Representation of images by surfaces and higher dimensional manifolds in non-Euclidean space , 1998 .

[40]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[41]  Tony F. Chan,et al.  Color TV: total variation methods for restoration of vector-valued images , 1998, IEEE Trans. Image Process..

[42]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..