Dynamically Optimizing Parameters in Support Vector Regression: An Application of Electricity Load Forecasting

This study develops a novel model, GA-SVR, for parameters optimization in support vector regression and implements this new model in a problem forecasting maximum electrical daily load. The real-valued genetic algorithm (RGA) was adapted to search the optimal parameters of support vector regression (SVR) to increase the accuracy of SVR. The proposed model was tested on a complicated electricity load forecasting competition announced on the EUNITE network. The results illustrated that the new GA-SVR model outperformed previous models. Specifically, the new GA-SVR model can successfully identify the optimal values of parameters of SVR with the lowest prediction error values, MAPE and maximum error, in electricity load forecasting.

[1]  Q. Henry Wu,et al.  Optimization of control parameters in genetic algorithms: a stochastic approach , 1999, Int. J. Syst. Sci..

[2]  Dustin Boswell,et al.  Introduction to Support Vector Machines , 2002 .

[3]  Young-Chan Lee,et al.  Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters , 2005, Expert Syst. Appl..

[4]  Colin Campbell,et al.  Kernel methods: a survey of current techniques , 2002, Neurocomputing.

[5]  R. Buizza,et al.  Using weather ensemble predictions in electricity demand forecasting , 2003 .

[6]  Michael P. Clements,et al.  A comparison of tests of nonlinear cointegration with application to the predictability of US interest rates using the term structure , 2004 .

[7]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[8]  V. K. Jayaraman,et al.  Control of chaotic dynamical systems using support vector machines , 2003 .

[9]  F. Girosi,et al.  Nonlinear prediction of chaotic time series using support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[10]  S. Sathiya Keerthi,et al.  Evaluation of simple performance measures for tuning SVM hyperparameters , 2003, Neurocomputing.

[11]  Clive W. J. Granger,et al.  Short-run forecasts of electricity loads and peaks , 2001 .

[12]  Wu Meng,et al.  Application of Support Vector Machines in Financial Time Series Forecasting , 2007 .

[13]  Nello Cristianini,et al.  An introduction to Support Vector Machines , 2000 .

[14]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[15]  Kyoung-jae Kim,et al.  Financial time series forecasting using support vector machines , 2003, Neurocomputing.

[16]  Adeike A. Adewuya New methods in genetic search with real-valued chromosomes , 1996 .

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  Gunnar Rätsch,et al.  Predicting Time Series with Support Vector Machines , 1997, ICANN.

[19]  Nello Cristianini,et al.  Dynamically Adapting Kernels in Support Vector Machines , 1998, NIPS.

[20]  A. Harvey,et al.  Forecasting Hourly Electricity Demand Using Time-Varying Splines , 1993 .

[21]  Lijuan Cao,et al.  Support vector machines experts for time series forecasting , 2003, Neurocomputing.

[22]  Yo-Ping Huang,et al.  Real-valued genetic algorithms for fuzzy grey prediction system , 1997, Fuzzy Sets Syst..

[23]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[24]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[25]  R. Shah,et al.  Least Squares Support Vector Machines , 2022 .

[26]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[27]  Johan A. K. Suykens,et al.  LS-SVMlab Toolbox User's Guide version 1.7 , 2003 .

[28]  Carlos E. Pedreira,et al.  Neural networks for short-term load forecasting: a review and evaluation , 2001 .

[29]  Simon Haykin,et al.  Support vector machines for dynamic reconstruction of a chaotic system , 1999 .

[30]  R. Ramanathan,et al.  Short-run forecasts of electricity loads and peaks , 1997 .

[31]  Ming-Wei Chang,et al.  Load Forecasting Using Support Vector Machines: A Study on EUNITE Competition 2001 , 2004, IEEE Transactions on Power Systems.