Information Rate of Some Classes of Non-regular Languages: An Automata-Theoretic Approach - (Extended Abstract)

We show that the information rate of the language accepted by a reversal-bounded deterministic counter machine is computable. For the nondeterministic case, we provide computable upper bounds. For the class of languages accepted by multi-tape deterministic finite automata, the information rate is computable as well.

[1]  Oscar H. Ibarra,et al.  A Solvable Class of Quadratic Diophantine Equations with Applications to Verification of Infinite-State Systems , 2003, ICALP.

[2]  Oscar H. Ibarra,et al.  Execution Information Rate for Some Classes of Automata , 2013, LATA.

[3]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[4]  Hermann A. Maurer,et al.  The Structure Generating Function and Entropy of Tuple Languages , 1971, Inf. Control..

[5]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[6]  Oscar H. Ibarra,et al.  Similarity in languages and programs , 2013, Theor. Comput. Sci..

[7]  Brenda S. Baker,et al.  Reversal-Bounded Multipushdown Machines , 1974, J. Comput. Syst. Sci..

[8]  George A. Miller,et al.  Finite State Languages , 1958, Inf. Control..

[9]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[10]  Ludwig Staiger The Entropy of Lukasiewicz-Languages , 2001, Developments in Language Theory.

[11]  Oscar H. Ibarra,et al.  Characterizations of Catalytic Membrane Computing Systems , 2003, MFCS.

[12]  Zhe Dang,et al.  Pushdown timed automata: a binary reachability characterization and safety verification , 2001, Theor. Comput. Sci..

[13]  Rohit Parikh,et al.  On Context-Free Languages , 1966, JACM.

[14]  Zhe Dang,et al.  Information gain of black-box testing , 2011, Formal Aspects of Computing.

[15]  Oscar H. Ibarra,et al.  Sampling a Two-Way Finite Automaton , 2015 .

[16]  Eugene Asarin,et al.  Volume and Entropy of Regular Timed Languages: Discretization Approach , 2009, CONCUR.

[17]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[18]  Dominique Perrin,et al.  Compression and Entropy , 1992, STACS.

[19]  Oscar H. Ibarra,et al.  Binary Reachability Analysis of Discrete Pushdown Timed Automata , 2000, CAV.

[20]  F. P. Kaminger The Noncomputability of the Channel Capacity of Context-Senstitive Languages , 1970, Inf. Control..

[21]  Werner Kuich,et al.  On the Entropy of Context-Free Languages , 1970, Inf. Control..

[22]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..