Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora

[1]  R. Sjöholm,et al.  Complete assignments of the (1)H and (13)C chemical shifts and J(H,H) coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. , 2008, Carbohydrate research.

[2]  A. Gasbarrini,et al.  Bacteroides thetaiotaomicron in the gut: molecular aspects of their interaction. , 2007, Digestive and liver disease : official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver.

[3]  L. Tailford,et al.  Mannose Foraging by Bacteroides thetaiotaomicron , 2007, Journal of Biological Chemistry.

[4]  Donald A. Comfort,et al.  Biochemical analysis of Thermotoga maritima GH36 alpha-galactosidase (TmGalA) confirms the mechanistic commonality of clan GH-D glycoside hydrolases. , 2007, Biochemistry.

[5]  S. Bröer,et al.  Structure-function relationships of heterodimeric amino acid transporters , 2007, Cell Biochemistry and Biophysics.

[6]  M. Fogg,et al.  Ligation independent cloning (LIC) as a rapid route to families of recombinant biocatalysts from sequenced prokaryotic genomes. , 2006, Organic & biomolecular chemistry.

[7]  B. Henrissat,et al.  Recent structural insights into the expanding world of carbohydrate-active enzymes. , 2005, Current opinion in structural biology.

[8]  D. G. Naumoff GH97 is a new family of glycoside hydrolases, which is related to the α-galactosidase superfamily , 2005, BMC Genomics.

[9]  F. Studier,et al.  Protein production by auto-induction in high density shaking cultures. , 2005, Protein expression and purification.

[10]  Wolfram Tempel,et al.  Mechanism of Class 1 (Glycosylhydrolase Family 47) α-Mannosidases Involved in N-Glycan Processing and Endoplasmic Reticulum Quality Control* , 2005, Journal of Biological Chemistry.

[11]  Bernard Henrissat,et al.  Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18 , 2005, The FEBS journal.

[12]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[13]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[14]  Wayne F Anderson,et al.  Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. , 2004, Structure.

[15]  Š. Janeček,et al.  Bioinformatics of the glycoside hydrolase family 57 and identification of catalytic residues in amylopullulanase from Thermococcus hydrothermalis. , 2004, European journal of biochemistry.

[16]  B. Henrissat,et al.  The Three-dimensional Structure of Invertase (β-Fructosidase) from Thermotoga maritima Reveals a Bimodular Arrangement and an Evolutionary Relationship between Retaining and Inverting Glycosidases* , 2004, Journal of Biological Chemistry.

[17]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[18]  L. Comstock,et al.  Bacteroides thetaiotaomicron: a dynamic, niche-adapted human symbiont. , 2003, Bioessays.

[19]  A. Tanner,et al.  Cloning and expression of alpha-D-glucosidase and N-acetyl-beta-glucosaminidase from the periodontal pathogen, Tannerella forsythensis (Bacteroides forsythus). , 2003, Oral microbiology and immunology.

[20]  Thomas C. Terwilliger,et al.  Improving macromolecular atomic models at moderate resolution by automated iterative model building, statistical density modification and refinement , 2003, Acta crystallographica. Section D, Biological crystallography.

[21]  Z. Fujimoto,et al.  Crystal Structure of Rice α-Galactosidase Complexed with D-Galactose* , 2003, Journal of Biological Chemistry.

[22]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[23]  L. Hannick,et al.  The 1.9 A structure of alpha-N-acetylgalactosaminidase: molecular basis of glycosidase deficiency diseases. , 2002, Structure.

[24]  A. Salyers,et al.  New Regulatory Gene That Contributes to Control ofBacteroides thetaiotaomicron Starch Utilization Genes , 2001, Journal of bacteriology.

[25]  B. Matthews,et al.  A structural view of the action of Escherichia coli (lacZ) beta-galactosidase. , 2001, Biochemistry.

[26]  N. Wicker,et al.  Secator: a program for inferring protein subfamilies from phylogenetic trees. , 2001, Molecular biology and evolution.

[27]  D. Kuntz,et al.  Structure of Golgi α‐mannosidase II: a target for inhibition of growth and metastasis of cancer cells , 2001, The EMBO journal.

[28]  P. Howell,et al.  Structural Basis for Catalysis and Inhibition ofN-Glycan Processing Class I α1,2-Mannosidases* , 2000, The Journal of Biological Chemistry.

[29]  T. Borchert,et al.  Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. , 2000, Biochemistry.

[30]  S. Withers,et al.  Glycosidase mechanisms: anatomy of a finely tuned catalyst. , 1999, Accounts of chemical research.

[31]  Birte Svensson,et al.  Recent Advances in Carbohydrate Bioengineering , 1999 .

[32]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[33]  Pedro M. Coutinho,et al.  Carbohydrate-active enzymes : an integrated database approach , 1999 .

[34]  B Henrissat,et al.  Structural and sequence-based classification of glycoside hydrolases. , 1997, Current opinion in structural biology.

[35]  B. Henrissat,et al.  Domain Evolution in the α-Amylase Family , 1997, Journal of Molecular Evolution.

[36]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[37]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[38]  O Gascuel,et al.  BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. , 1997, Molecular biology and evolution.

[39]  A. Salyers,et al.  Characterization of four outer membrane proteins that play a role in utilization of starch by Bacteroides thetaiotaomicron , 1997, Journal of bacteriology.

[40]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[41]  A. Salyers,et al.  Contribution of a neopullulanase, a pullulanase, and an alpha-glucosidase to growth of Bacteroides thetaiotaomicron on starch , 1996, Journal of bacteriology.

[42]  R. E. Huber,et al.  Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 3. Evidence that Glu-461 participates in Brønsted acid-base catalysis of beta-D-galactopyranosyl group transfer. , 1996, Biochemistry.

[43]  B. Matthews,et al.  Structure-based design of a lysozyme with altered catalytic activity , 1995, Nature Structural Biology.

[44]  S. Withers,et al.  Changing Enzymic Reaction Mechanisms by Mutagenesis: Conversion of a Retaining Glucosidase to an Inverting Enzyme , 1994 .

[45]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[46]  V S Lamzin,et al.  Automated refinement of protein models. , 1993, Acta crystallographica. Section D, Biological crystallography.

[47]  A. Salyers,et al.  Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1 , 1991, Journal of bacteriology.

[48]  T. Selwood,et al.  A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase. , 1990, The Biochemical journal.

[49]  S. Withers,et al.  The necessity of magnesium cation for acid assistance aglycone departure in catalysis by Escherichia coli (lacZ) beta-galactosidase. , 1978, The Biochemical journal.

[50]  J. Knowles,et al.  The intrinsic pKa-values of functional groups in enzymes: improper deductions from the pH-dependence of steady-state parameters. , 1976, CRC critical reviews in biochemistry.

[51]  Daniel E. Koshland,et al.  STEREOCHEMISTRY AND THE MECHANISM OF ENZYMATIC REACTIONS , 1953 .