Integrated time-optimal trajectory planning and control design for industrial robot manipulator

We consider planning and implementation of fast motions for industrial manipulators constrained to a given geometric path. With such a problem formulation, which is quite reasonable for many standard operation scenarios, it is intuitively clear that a feedback controller should be designed to achieve orbital stabilization of a time-optimal trajectory instead asymptotic. We propose an algorithm to convert an asymptotically stabilizing controller into an orbitally stabilizing one and check achievable performance in simulations and, more importantly, in experiments performed on a standard industrial robot ABB IRB 140 with the IRC5-system extended with an open control interface. It is verified that the proposed re-design allows significantly reduced deviations of the actual trajectories from the desired one at high speeds not only for a chosen base feedback design but also outperforming the state-of-the-art commercial implementation offered by ABB Robotics.