On switched Hamiltonian systems

In this paper we study the well-posedness and stability of a class of switched linear passive systems. Instrumental in our approach is the result, also of interest in its own right, that any linear passive input-state-output system with strictly positive storage function can be written as a port-Hamiltonian system.

[1]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[2]  J. Tolsa,et al.  Analysis of linear networks with inconsistent initial conditions , 1993 .

[3]  A. Michel Recent trends in the stability analysis of hybrid dynamical systems , 1999 .

[4]  Romeo Ortega,et al.  A Hamiltonian viewpoint in the modeling of switching power converters , 1999, Autom..

[5]  A. Dervişoğlu,et al.  State equations and initial values in active RLC networks , 1971, IEEE Transactions on Circuit Theory.

[6]  Johannes Schumacher,et al.  The nature of solutions to linear passive complementarity systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[7]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[8]  L. Silverman,et al.  System structure and singular control , 1983 .

[9]  Marian K. Kazimierczuk,et al.  Analysis of networks with ideal switches by state equations , 1997 .

[10]  Yoshifumi Murakami,et al.  A method for the formulation and solution of circuits composed of switches and linear RLC elements , 1987 .

[11]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[12]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[13]  W. Heemels,et al.  On the dynamic analysis of piecewise-linear networks , 2002 .

[14]  T. Matsumoto,et al.  On the dynamics of electrical networks , 1976 .

[15]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[16]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[17]  A. Opal,et al.  Analysis of nonlinear networks with inconsistent initial conditions , 1995 .

[18]  A. Opal,et al.  Consistent initial conditions of nonlinear networks with switches , 1991 .

[19]  P. S. Bauer Dissipative Dynamical Systems: I. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S. Sastry,et al.  Jump behavior of circuits and systems , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[21]  A. Schaft,et al.  An intrinsic Hamiltonian formulation of the dynamics of LC-circuits , 1995 .

[22]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[23]  Cheong Boon Soh,et al.  Lyapunov stability of a class of hybrid dynamic systems , 2000, Autom..