Building manifolds from quantum codes

We give a procedure for "reverse engineering" a closed, simply connected, Riemannian manifold with bounded local geometry from a sparse chain complex over $\mathbb{Z}$. Applying this procedure to chain complexes obtained by "lifting" recently developed quantum codes, which correspond to chain complexes over $\mathbb{Z}_2$, we construct the first examples of power law $\mathbb{Z}_2$ systolic freedom. As a result that may be of independent interest in graph theory, we give an efficient randomized algorithm to construct a weakly fundamental cycle basis for a graph, such that each edge appears only polylogarithmically times in the basis. We use this result to trivialize the fundamental group of the manifold we construct.

[1]  John Stallings,et al.  Polyhedral homotopy-spheres , 1960 .

[2]  J. Hudson Piecewise linear topology , 1966 .

[3]  Gilles Zémor,et al.  On Cayley Graphs, Surface Codes, and the Limits of Homological Coding for Quantum Error Correction , 2009, IWCC.

[4]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[5]  R. O'Donnell,et al.  Fiber Bundle Codes: Breaking the $N^{1/2} \operatorname{polylog}(N)$ Barrier for Quantum LDPC Codes , 2020, 2009.03921.

[6]  H. Fédérer Geometric Measure Theory , 1969 .

[7]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[8]  M. Gromov,et al.  Generalizations of the Kolmogorov–Barzdin embedding estimates , 2011, 1103.3423.

[9]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[10]  William P. Minicozzi,et al.  A Course in Minimal Surfaces , 2011 .

[11]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[12]  L. Santaló Integral geometry and geometric probability , 1976 .

[13]  Charles Terence Clegg Wall,et al.  Surgery on compact manifolds , 1970 .

[14]  Systolic freedom of orientable manifolds , 1997, dg-ga/9707002.

[15]  J. Milnor Lectures on the h-cobordism theorem , 1965 .

[16]  Z_2-Systolic-Freedom , 1999, math/0002124.

[17]  A. Lubotzky,et al.  Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds , 2013, 1310.5555.

[18]  Nikolas P. Breuckmann,et al.  Balanced Product Quantum Codes , 2020, IEEE Transactions on Information Theory.

[19]  J. Milnor,et al.  Groups of Homotopy Spheres, I , 2015 .

[20]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[21]  M. Gromov SYSTOLES AND INTERSYSTOLIC INEQUALITIES , 1996 .

[22]  Matthew B. Hastings,et al.  Weight reduction for quantum codes , 2016, Quantum Inf. Comput..