Traveling waves to a Burgers–Korteweg–de Vries-type equation with higher-order nonlinearities

Abstract In this paper, first we survey some recent advances in the study of traveling wave solutions to the Burgers–Korteweg–de Vries equation and some comments are given. Then, we study a Burgers–Korteweg–de Vries-type equation with higher-order nonlinearities. A qualitative analysis to a two-dimensional autonomous system which is equivalent to the Burgers–KdV-type equation is presented, and indicates that under certain conditions, the Burgers–Korteweg–de Vries-type equation has neither nontrivial bell-profile solitary waves, nor periodic waves. Finally, a solitary wave solution is obtained by means of the first-integral method which is based on the ring theory of commutative algebra.

[1]  Bishwajyoti Dey,et al.  K-dV Like Equations with Domain Wall Solutions and Their Hamiltonians , 1988 .

[2]  P. Hu Collisional Theory of Shock and Nonlinear Waves in a Plasma , 1972 .

[3]  Shun Jian-jun The proper analytical solution of the Korteweg-de Vries-Burgers equation , 1987 .

[4]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[5]  T. Kawahara Weak Nonlinear Magneto-Acoustic Waves in a Cold Plasma in the Presence of Effective Electron-Ion Collisions , 1970 .

[6]  Michael I. Weinstein,et al.  Eigenvalues, and instabilities of solitary waves , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[7]  H. Demiray A note on the exact travelling wave solution to the KdV–Burgers equation , 2003 .

[8]  R. Johnson Shallow Water Waves on a Viscous Fluid—The Undular Bore , 1972 .

[9]  Yoshikazu Giga,et al.  Nonlinear Partial Differential Equations , 2004 .

[10]  M. Wadati,et al.  Wave Propagation in Nonlinear Lattice. III , 1975 .

[11]  Qianshun Chang,et al.  Explicit exact solitary-wave solutions for compound KdV-type and compound KdV–Burgers-type equations with nonlinear terms of any order , 2002 .

[12]  D. F. Lawden Elliptic Functions and Applications , 1989 .

[13]  M. Weinstein Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation , 1987 .

[14]  Mark W. Coffey,et al.  On series expansions giving closed-form solutions of Korteweg-de Vries-like equations , 1990 .

[15]  S Liu,et al.  KdV-BURGERS EQUATION MODELLING OF TURBULENCE , 1992 .

[16]  E. L. Ince Ordinary differential equations , 1927 .

[17]  José Canosa,et al.  The Korteweg-de Vries-Burgers equation , 1977 .

[18]  G. Gao A theory of interaction between dissipation and dispersion of turbulence , 1985 .

[19]  Zhaosheng Feng,et al.  The first-integral method to study the Burgers–Korteweg–de Vries equation , 2002 .

[20]  L. van Wijngaarden,et al.  One-Dimensional Flow of Liquids Containing Small Gas Bubbles , 1972 .

[21]  R. S. Johnson A non-linear equation incorporating damping and dispersion , 1970, Journal of Fluid Mechanics.

[22]  J. M. Burgers,et al.  Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion , 1995 .

[23]  A. Jeffrey,et al.  Exact solutions to the Korteweg-de Vries-Burgers equation , 1989 .

[24]  Darryl D. Holm,et al.  Nonlinear systems of partial differential equations in applied mathematics , 1986 .

[25]  Zhaosheng Feng,et al.  Traveling solitary wave solutions to evolution equations with nonlinear terms of any order , 2003 .

[26]  R. Miura The Korteweg–deVries Equation: A Survey of Results , 1976 .

[27]  Mingliang Wang Exact solutions for a compound KdV-Burgers equation , 1996 .

[28]  D. Korteweg,et al.  XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves , 1895 .

[29]  A. Fordy,et al.  The prolongation structures of quasi-polynomial flows , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  Zhaosheng Feng Algebraic curve solution for second-order polynomial autonomous systems , 2001 .

[31]  B. Duffy,et al.  An automated tanh-function method for finding solitary wave solutions to non-linear evolution equations , 1996 .

[32]  H. Grad,et al.  Unified Shock Profile in a Plasma , 1967 .

[33]  A. Jeffrey,et al.  Exact solutions to the KdV-Burgers' equation , 1991 .

[34]  Zhaosheng Feng,et al.  On explicit exact solutions to the compound Burgers-KdV equation , 2002 .

[35]  M. Vlieg-Hulstman,et al.  Korteweg-de Vries-Burgers equation and the Painleve property , 1992 .

[36]  H. Steudel,et al.  Non-existence of prolongation structure for the Korteweg-de Vries-Burgers equation , 1985 .

[37]  Mark J. Ablowitz,et al.  Explicit solutions of Fisher's equation for a special wave speed , 1979 .

[38]  B. Qin,et al.  Direct evidence of phosphorus outbreak release from sediment to overlying water in a large shallow lake caused by strong wind wave disturbance , 2005 .

[39]  Zhaosheng Feng Exact solution in terms of elliptic functions for the Burgers–Korteweg–de Vries equation , 2003 .

[40]  J. Bona,et al.  Travelling-wave solutions to the Korteweg-de Vries-Burgers equation , 1985, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[41]  Jibin Li,et al.  Bifurcations of solitary Waves and Domain Wall Waves for KdV-like equation with Higher Order Nonlinearity , 2002, Int. J. Bifurc. Chaos.

[42]  D. J. Benney Long Waves on Liquid Films , 1966 .

[43]  I. McIntosh Single phase averaging and travelling wave solutions of the modified Burgers-Korteweg-de Vries equation , 1990 .

[44]  Yong Chen,et al.  Explicit exact solutions for new general two-dimensional KdV-type and two-dimensional KdV–Burgers-type equations with nonlinear terms of any order , 2002 .

[45]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[46]  Bishwajyoti Dey,et al.  DOMAIN WALL SOLUTIONS OF KdV LIKE EQUATIONS WITH HIGHER ORDER NONLINEARITY , 1986 .

[47]  K. Spatschek,et al.  Stability theorem for KdV-type equations , 1984, Journal of Plasma Physics.

[48]  E. J. Parkes,et al.  Travelling solitary wave solutions to a compound KdV-Burgers equation , 1997 .

[49]  P. Souganidis,et al.  Stability and instability of solitary waves of Korteweg-de Vries type , 1987, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[50]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[51]  John Gibbon,et al.  The Painlevé Property and Hirota's Method , 1985 .

[52]  M. Vlieg-Hulstman,et al.  The Korteweg-de Vries-Burgers' equation: a reconstruction of exact solutions , 1991 .

[53]  Kenneth L. Jones,et al.  EXISTENCE OF PERIODIC TRAVELING WAVE SOLUTION TO THE FORCED GENERALIZED NEARLY CONCENTRIC KORTEWEG-DE VRIES EQUATION , 2000 .

[54]  Zhaosheng Feng,et al.  A note on “Explicit exact solutions to the compound Burgers–Korteweg–de Vries equation” , 2003 .

[55]  Michael I. Weinstein,et al.  Oscillatory instability of traveling waves for a KdV-Burgers equation , 1993 .