Say NO to Optimization: A Nonorthogonal Quantum Eigensolver

A balanced description of both static and dynamic correlations in electronic systems with nearly degenerate low-lying states presents a challenge for multi-configurational methods on classical computers. We present here a quantum algorithm utilizing the action of correlating cluster operators to provide high-quality wavefunction ans¨atze employing a non-orthogonal multireference basis that captures a significant portion of the exact wavefunction in a highly compact manner, and that allows computation of the resulting energies and wavefunctions at polynomial cost with a quantum computer. This enables a significant improvement over the corresponding classical non-orthogonal solver, which incurs an exponential cost when evaluating off-diagonal matrix elements between the ansatz states, and is therefore intractable. We implement the non-orthogonal quantum eigensolver (NOQE) here with an efficient ansatz parameterization inspired by classical quantum chemistry methods that succeed in capturing significant amounts of electronic correlation accurately. By taking advantage of classical methods for chemistry, NOQE provides a flexible, compact, and rigorous description of both static and dynamic electronic correlation, making it an attractive method for the calculation of electronic states of a wide range of molecular systems.

[1]  B. Harvey,et al.  Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding , 2022, Science.

[2]  Yuji Nakatsukasa,et al.  A Theory of Quantum Subspace Diagonalization , 2021, SIAM Journal on Matrix Analysis and Applications.

[3]  Joonho Lee,et al.  Compressing Many-Body Fermion Operators under Unitary Constraints. , 2021, Journal of chemical theory and computation.

[4]  David B. Williams-Young,et al.  The Effect of Geometry, Spin, and Orbital Optimization in Achieving Accurate, Correlated Results for Iron-Sulfur Cubanes. , 2021, Journal of chemical theory and computation.

[5]  K. B. Whaley,et al.  Real-Time Evolution for Ultracompact Hamiltonian Eigenstates on Quantum Hardware , 2021, PRX Quantum.

[6]  Joonho Lee,et al.  Regularized Second Order Møller-Plesset Theory: A More Accurate Alternative to Conventional MP2 for Noncovalent Interactions and Transition Metal Thermochemistry for the Same Compute Cost , 2021 .

[7]  Daniel S. Levine,et al.  Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package , 2021, The Journal of chemical physics.

[8]  Sandy Irani,et al.  Electronic Structure in a Fixed Basis is QMA-complete , 2021, ArXiv.

[9]  M. Head‐Gordon,et al.  Orbital Optimized Density Functional Theory for Electronic Excited States. , 2021, The journal of physical chemistry letters.

[10]  Joonho Lee,et al.  Revealing the nature of electron correlation in transition metal complexes with symmetry breaking and chemical intuition. , 2021, The Journal of chemical physics.

[11]  Minh C. Tran,et al.  Theory of Trotter Error with Commutator Scaling , 2021 .

[12]  M. Cerezo,et al.  Effect of barren plateaus on gradient-free optimization , 2020, Quantum.

[13]  Costin Iancu,et al.  Randomized Compiling for Scalable Quantum Computing on a Noisy Superconducting Quantum Processor , 2020, Physical Review X.

[14]  Ryan Babbush,et al.  Low rank representations for quantum simulation of electronic structure , 2018, npj Quantum Information.

[15]  D. Wales,et al.  Energy Landscapes for Electronic Structure. , 2020, Journal of chemical theory and computation.

[16]  Jeffrey S Derrick,et al.  Metal-Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO2 Reduction at Low Overpotentials. , 2020, Journal of the American Chemical Society.

[17]  M. Head‐Gordon,et al.  Third-Order Møller-Plesset Theory Made More Useful? The Role of Density Functional Theory Orbitals. , 2020, Journal of chemical theory and computation.

[18]  Daniel S. Levine,et al.  The Ground State Electronic Energy of Benzene. , 2020, The journal of physical chemistry letters.

[19]  M. Head‐Gordon,et al.  Bimetallic Mechanism for Alkyne Cyclotrimerization with a Two-Coordinate Fe Precatalyst , 2020, ACS Catalysis.

[20]  J. Biamonte,et al.  Variational Quantum Eigensolver for Frustrated Quantum Systems , 2020, ArXiv.

[21]  Timothy C. Berkelbach,et al.  Recent developments in the PySCF program package. , 2020, The Journal of chemical physics.

[22]  Daniel S. Levine,et al.  CASSCF with Extremely Large Active Spaces using the Adaptive Sampling Configuration Interaction Method. , 2019, Journal of chemical theory and computation.

[23]  Francesco A. Evangelista,et al.  A Multireference Quantum Krylov Algorithm for Strongly Correlated Electrons. , 2019, Journal of chemical theory and computation.

[24]  M. Head‐Gordon,et al.  Excited state orbital optimization via minimizing the square of the gradient: General approach and application to singly and doubly excited states via density functional theory. , 2019, Journal of chemical theory and computation.

[25]  Yuki Kurashige,et al.  A Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits , 2019, 1909.12410.

[26]  K. B. Whaley,et al.  A non-orthogonal variational quantum eigensolver , 2019, New Journal of Physics.

[27]  Oleksandr Kyriienko,et al.  Quantum inverse iteration algorithm for near-term quantum devices , 2019 .

[28]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[29]  Daniel S. Levine,et al.  Modern Approaches to Exact Diagonalization and Selected Configuration Interaction with the Adaptive Sampling CI Method. , 2018, Journal of chemical theory and computation.

[30]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[31]  Benjamin P Pritchard,et al.  New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community , 2019, J. Chem. Inf. Model..

[32]  Peter L. McMahon,et al.  Quantum Filter Diagonalization: Quantum Eigendecomposition without Full Quantum Phase Estimation , 2019, 1909.08925.

[33]  M. Head‐Gordon,et al.  Beyond the Coulson-Fischer point: characterizing single excitation CI and TDDFT for excited states in single bond dissociations. , 2019, Physical chemistry chemical physics : PCCP.

[34]  Daniel S. Levine,et al.  What levels of coupled cluster theory are appropriate for transition metal systems? A study using near exact quantum chemical values for 3d transition metal binary compounds. , 2019, Journal of chemical theory and computation.

[35]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[36]  Joonho Lee,et al.  Third-Order Møller-Plesset Perturbation Theory Made Useful? Choice of Orbitals and Scaling Greatly Improves Accuracy for Thermochemistry, Kinetics and Intermolecular Interactions. , 2019, The journal of physical chemistry letters.

[37]  Bryan O'Gorman,et al.  Generalized swap networks for near-term quantum computing , 2019, ArXiv.

[38]  M. Head‐Gordon,et al.  Well-behaved versus ill-behaved density functionals for single bond dissociation: Separating success from disaster functional by functional for stretched H2. , 2018, The Journal of chemical physics.

[39]  G. Chan,et al.  Efficient Ab Initio Auxiliary-Field Quantum Monte Carlo Calculations in Gaussian Bases via Low-Rank Tensor Decomposition. , 2018, Journal of chemical theory and computation.

[40]  G. Chan,et al.  The electronic complexity of the ground-state of the FeMo cofactor of nitrogenase as relevant to quantum simulations. , 2018, The Journal of chemical physics.

[41]  Daniel S. Levine,et al.  Postponing the orthogonality catastrophe: efficient state preparation for electronic structure simulations on quantum devices , 2018, 1809.05523.

[42]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[43]  Alán Aspuru-Guzik,et al.  Quantum Simulation of Electronic Structure with Linear Depth and Connectivity. , 2017, Physical review letters.

[44]  B. Peng,et al.  Highly Efficient and Scalable Compound Decomposition of Two-Electron Integral Tensor and Its Application in Coupled Cluster Calculations. , 2017, Journal of chemical theory and computation.

[45]  J. Olsen,et al.  Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations. , 2017, The Journal of chemical physics.

[46]  M. Head‐Gordon,et al.  Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals , 2017 .

[47]  F. Neese,et al.  Electronic Structure of a Formal Iron(0) Porphyrin Complex Relevant to CO2 Reduction. , 2017, Inorganic chemistry.

[48]  V. Batista,et al.  The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data. , 2017, Accounts of chemical research.

[49]  E. Davidson,et al.  Nature of ground and electronic excited states of higher acenes , 2016, Proceedings of the National Academy of Sciences.

[50]  Shane R. Yost,et al.  Size consistent formulations of the perturb-then-diagonalize Møller-Plesset perturbation theory correction to non-orthogonal configuration interaction. , 2016, The Journal of chemical physics.

[51]  C J Umrigar,et al.  Heat-Bath Configuration Interaction: An Efficient Selected Configuration Interaction Algorithm Inspired by Heat-Bath Sampling. , 2016, Journal of chemical theory and computation.

[52]  E. Neuscamman,et al.  Improved Optimization for the Cluster Jastrow Antisymmetric Geminal Power and Tests on Triple-Bond Dissociations. , 2016, Journal of chemical theory and computation.

[53]  Frank Neese,et al.  Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. , 2016, The Journal of chemical physics.

[54]  Joel J. Wallman,et al.  Noise tailoring for scalable quantum computation via randomized compiling , 2015, 1512.01098.

[55]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[56]  David W. Small,et al.  A simple way to test for collinearity in spin symmetry broken wave functions: general theory and application to generalized Hartree Fock. , 2015, The Journal of chemical physics.

[57]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[58]  Nicholas J. Mayhall,et al.  Spin-flip non-orthogonal configuration interaction: a variational and almost black-box method for describing strongly correlated molecules. , 2014, Physical chemistry chemical physics : PCCP.

[59]  Frank Neese,et al.  Low-energy spectrum of iron-sulfur clusters directly from many-particle quantum mechanics. , 2014, Nature chemistry.

[60]  Martin Head-Gordon,et al.  Non-orthogonal configuration interaction for the calculation of multielectron excited states. , 2014, The Journal of chemical physics.

[61]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[62]  E. Neuscamman,et al.  Communication: a Jastrow factor coupled cluster theory for weak and strong electron correlation. , 2013, The Journal of chemical physics.

[63]  E. Neuscamman,et al.  The Jastrow antisymmetric geminal power in Hilbert space: theory, benchmarking, and application to a novel transition state. , 2013, The Journal of chemical physics.

[64]  Alán Aspuru-Guzik,et al.  Computational Complexity in Electronic Structure , 2012, Physical chemistry chemical physics : PCCP.

[65]  David W. Small,et al.  Post-modern valence bond theory for strongly correlated electron spins. , 2011, Physical chemistry chemical physics : PCCP.

[66]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[67]  G. Scuseria,et al.  Generalized Hartree-Fock Description of Molecular Dissociation. , 2011, Journal of chemical theory and computation.

[68]  Jan M. L. Martin,et al.  W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data , 2011 .

[69]  Dieter Cremer,et al.  Møller–Plesset perturbation theory: from small molecule methods to methods for thousands of atoms , 2011 .

[70]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[71]  F. Neese,et al.  Interplay of Correlation and Relativistic Effects in Correlated Calculations on Transition-Metal Complexes: The (Cu2O2)(2+) Core Revisited. , 2011, Journal of chemical theory and computation.

[72]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.

[73]  M. Head‐Gordon,et al.  Hartree-Fock solutions as a quasidiabatic basis for nonorthogonal configuration interaction. , 2009, The Journal of chemical physics.

[74]  M. Head‐Gordon,et al.  Violations of N-representability from spin-unrestricted orbitals in Møller–Plesset perturbation theory and related double-hybrid density functional theory , 2009 .

[75]  Robert Eugene Blankenship,et al.  The origin of the oxygen-evolving complex , 2008 .

[76]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[77]  Martin Head-Gordon,et al.  A near linear-scaling smooth local coupled cluster algorithm for electronic structure. , 2006, The Journal of chemical physics.

[78]  Andrew G. Taube,et al.  New perspectives on unitary coupled‐cluster theory , 2006 .

[79]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[80]  Martin Head-Gordon,et al.  Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method. , 2004, The Journal of chemical physics.

[81]  B. Roos,et al.  A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2) , 2004 .

[82]  R. Mathias,et al.  The Definite Generalized Eigenvalue Problem : A New Perturbation Theory , 2004 .

[83]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[84]  T. M. Rice,et al.  Metal‐Insulator Transitions , 2003 .

[85]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[86]  M. Ratner Molecular electronic-structure theory , 2000 .

[87]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[88]  Björn O. Roos,et al.  Multiconfigurational perturbation theory with level shift — the Cr2 potential revisited , 1995 .

[89]  Ernest R. Davidson,et al.  Different forms of perturbation theory for the calculation of the correlation energy , 1992 .

[90]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[91]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[92]  Leo Radom,et al.  Why does unrestricted Mo/ller–Plesset perturbation theory converge so slowly for spin‐contaminated wave functions? , 1988 .

[93]  David M. Ceperley,et al.  Fixed-node quantum Monte Carlo for molecules , 1982 .

[94]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[95]  R. Broer,et al.  Broken orbital-symmetry and the description of hole states in the tetrahedral [CrO4]− anion. I. Introductory considerations and calculations on oxygen 1s hole states , 1981 .

[96]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[97]  G. Stewart Pertubation bounds for the definite generalized eigenvalue problem , 1979 .

[98]  John A. Pople,et al.  Self‐consistent molecular orbital methods. XVIII. Constraints and stability in Hartree–Fock theory , 1977 .

[99]  B. I. Bennett,et al.  Singlet–triplet splittings as obtained from the Xα-scattered wave method: A theoretical analysis , 1975 .

[100]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[101]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[102]  N. Handy,et al.  A calculation for the energies and wavefunctions for states of neon with full electronic correlation accuracy , 1969, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[103]  Josef Paldus,et al.  Stability Conditions for the Solutions of the Hartree—Fock Equations for Atomic and Molecular Systems. Application to the Pi‐Electron Model of Cyclic Polyenes , 1967 .

[104]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[105]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[106]  R. Nesbet Configuration interaction in orbital theories , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[107]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[108]  C. A. Coulson,et al.  XXXIV. Notes on the molecular orbital treatment of the hydrogen molecule , 1949 .

[109]  P. S. Epstein,et al.  The Stark effect from the point of view of Schroedinger's quantum theory , 1926 .