Discovery of the interstellar chiral molecule propylene oxide (CH3CHCH2O)

Chiral molecule discovered in space A chiral molecule is one that has two forms that are mirror images of each other: enantiomers. Biological systems overwhelmingly use one enantiomer over another, and some meteorites show an excess of one type. The two forms are almost identical chemically, so how this excess first arose is unknown. McGuire et al. used radio astronomy to detect the first known chiral molecule in space: propylene oxide. The work raises the prospect of measuring the enantiomer excess in various astronomical objects, including regions where planets are being formed, to discover how and why the excess first appeared. Science, this issue p. 1449 The first chiral molecule detected in space may offer clues to the origin of enantiomer excess. Life on Earth relies on chiral molecules—that is, species not superimposable on their mirror images. This manifests itself in the selection of a single molecular handedness, or homochirality, across the biosphere. We present the astronomical detection of a chiral molecule, propylene oxide (CH3CHCH2O), in absorption toward the Galactic center. Propylene oxide is detected in the gas phase in a cold, extended molecular shell around the embedded, massive protostellar clusters in the Sagittarius B2 star-forming region. This material is representative of the earliest stage of solar system evolution in which a chiral molecule has been found.

[1]  Laurent Nahon,et al.  ENANTIOMERIC EXCESSES INDUCED IN AMINO ACIDS BY ULTRAVIOLET CIRCULARLY POLARIZED LIGHT IRRADIATION OF EXTRATERRESTRIAL ICE ANALOGS: A POSSIBLE SOURCE OF ASYMMETRY FOR PREBIOTIC CHEMISTRY , 2014 .

[2]  Brendan Horton,et al.  An analytical perspective , 1996, Nature.

[3]  D. Finkbeiner,et al.  A LIMIT ON THE POLARIZED ANOMALOUS MICROWAVE EMISSION OF LYNDS 1622 , 2009, 0901.0133.

[4]  W. Irvine,et al.  Detection of Interstellar Ethylene Oxide (c-C2H4O) , 1997, The Astrophysical journal.

[5]  J. M. Hollis,et al.  Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar , 2004 .

[6]  France.,et al.  Organic molecules in the Galactic center - Hot core chemistry without hot cores , 2006, astro-ph/0605031.

[7]  J. Ott,et al.  Spectral imaging of the Sagittarius B2 region in multiple 3-mm molecular lines with the Mopra telescope , 2007, 0712.0218.

[8]  R. Crutcher,et al.  H I Zeeman Measurements of the Magnetic Field in Sagittarius B2 , 1996 .

[9]  Michael C. McCarthy,et al.  DETECTION OF E-CYANOMETHANIMINE TOWARD SAGITTARIUS B2(N) IN THE GREEN BANK TELESCOPE PRIMOS SURVEY , 2013 .

[10]  T. Gay,et al.  Chirally sensitive electron-induced molecular breakup and the Vester-Ulbricht hypothesis. , 2014, Physical review letters.

[11]  T. Wong,et al.  Beam Size, Shape and Efficiencies for the ATNF Mopra Radio Telescope at 86–115 GHz , 2005, Publications of the Astronomical Society of Australia.

[12]  E. Herbst,et al.  Complex Organic Interstellar Molecules , 2009 .

[13]  Salzman Circular Dichroism at Microwave Frequencies: Calculated Rotational Strengths for Transitions Up to J = 10 for Some Oxirane Derivatives. , 1998, Journal of molecular spectroscopy.

[14]  F. Lovas,et al.  Nonthermal Continuum toward Sagittarius B2(N-LMH) , 2007, astro-ph/0703399.

[15]  Andrew Steele,et al.  Organic compounds on comet 67P/Churyumov-Gerasimenko revealed by COSAC mass spectrometry , 2015, Science.

[16]  S. Macko,et al.  Isotopic evidence for extraterrestrial non- racemic amino acids in the Murchison meteorite , 1997, Nature.

[17]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[18]  W. Goss,et al.  Radio continuum and radio recombination line observations of Sagittarius B2 , 1993 .

[19]  J. Hough,et al.  Circular polarization in star-formation regions: implications for biomolecular homochirality. , 1998, Science.

[20]  B. Pate,et al.  Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey , 2012, 1206.6021.

[21]  E. A. Alekseev,et al.  A Rigorous Attempt to Verify Interstellar Glycine , 2004, astro-ph/0410335.

[22]  Chelen H. Johnson,et al.  INVESTIGATING THE MINIMUM ENERGY PRINCIPLE IN SEARCHES FOR NEW MOLECULAR SPECIES—THE CASE OF H2C3O ISOMERS , 2014, 1410.8528.

[23]  J. M. Hollis,et al.  Green Bank Telescope Detection of New Interstellar Aldehydes: Propenal and Propanal , 2004 .

[24]  G. Wagnière THE MAGNETOCHIRAL EFFECT AND RELATED OPTICAL PHENOMENA , 1999 .

[25]  J. M. Hollis,et al.  Confirmation of Interstellar Acetone , 2002 .

[26]  Karin I. Öberg,et al.  The ancient heritage of water ice in the solar system , 2014, Science.

[27]  Thomas L. Groy,et al.  Molecular asymmetry in extraterrestrial organic chemistry: An analytical perspective , 2011 .

[28]  W. Irvine,et al.  Survey Observations of c-C2H4O and CH3CHO toward Massive Star-forming Regions , 2001 .

[29]  On Measuring Accurate 21 cm Line Profiles with the Robert C. Byrd Green Bank Telescope , 2009, 0902.2210.

[30]  Jay M. Enoch,et al.  Handbook of Optics, Third Edition Volume I: Geometrical and Physical Optics, Polarized Light, Components and Instruments(set) , 2009 .

[31]  E. Quataert,et al.  Extragalactic Zeeman Detections in OH Megamasers , 2008, 0803.1832.

[32]  A. Lifshitz,et al.  Isomerization and decomposition of propylene oxide. Studies with a single-pulse shock tube , 1994 .

[33]  Daniel B. Holland,et al.  A direct digital synthesis chirped pulse Fourier transform microwave spectrometer. , 2013, The Review of scientific instruments.

[34]  Arnaud Belloche,et al.  Complex organic molecules in the interstellar medium: IRAM 30 m line survey of Sagittarius B2(N) and (M) , 2013, 1308.5062.

[35]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[36]  Michael C. McCarthy,et al.  THE DETECTION OF INTERSTELLAR ETHANIMINE (CH3CHNH) FROM OBSERVATIONS TAKEN DURING THE GBT PRIMOS SURVEY , 2013 .

[37]  E. Bergin,et al.  HERSCHEL OBSERVATIONS OF EXTRAORDINARY SOURCES: ANALYSIS OF THE HIFI 1.2 THz WIDE SPECTRAL SURVEY TOWARD ORION KL. I. METHODS , 2014, 1405.2351.

[38]  Daniel P. Glavin,et al.  Enrichment of the amino acid l-isovaline by aqueous alteration on CI and CM meteorite parent bodies , 2009, Proceedings of the National Academy of Sciences.

[39]  J. D. Swalen,et al.  Internal Barrier of Propylene Oxide from the Microwave Spectrum. I , 1957 .

[40]  Walter Gordy,et al.  Microwave Molecular Spectra , 1970 .

[41]  Jan M. Hollis,et al.  Cyclopropenone (c-H 2 C 3 O): A New Interstellar Ring Molecule , 2005 .

[42]  G. Blake,et al.  INTERSTELLAR CARBODIIMIDE (HNCNH): A NEW ASTRONOMICAL DETECTION FROM THE GBT PRIMOS SURVEY VIA MASER EMISSION FEATURES , 2012, 1209.1590.

[43]  Anthony Remijan,et al.  Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule , 2006 .