Vergleich der Effizienz von Polyhexanid-Biguanid, Argon-Kaltplasma und Kochsalzlavage zur Dekontamination von Bisswunden beim Hund

Zusammenfassung Ziel der Studie war, die Keimbelastung sowie die klinische Effizienz von Polyhexanid, Argon-Kaltplasma und Kochsalzlösung zur Reduktion der Bioburden bei Hundebissverletzungen zu überprüfen. Material und Methoden: In die Studie eingeschlossen wurden Hunde mit Bissverletzungen, die durch ein chirurgisches Debridement mit anschließender Wundbehandlung durch Lavage mit Polyhexanid-Biguanid (A), Therapie mit kaltem Argonplasma (B) oder Lavage mit physiologischer Kochsalzlösung (C) versorgt wurden. Ein bakterieller Abstrich erfolgte bei allen Patienten nach Debridement sowie nach der Lavage bzw. Behandlung mit Argon-Kaltplasma. Zur Auswertung der Resultate diente der Chi-Quadrat-Test. Ergebnisse: Insgesamt 40 Hunde gingen in die Studie ein (A: n = 12; B: n = 10; C: n = 18). Bei einem Großteil der Verletzungen handelte es sich um geringfügige Bisswunden. Ein Keimnachweis ergab sich bei 87,5% aller Patienten, wobei 19,8% aller Isolate als multiresistent klassifiziert wurden. Eine Reduktion der Keimlast durch Lavage wurde bei 8/12 Hunden der Gruppe A, 5/10 Hunden der Gruppe B und 14/18 Hunden der Gruppe C erreicht. Eine komplette Dekontamination durch Lavage gelang bei 5/12 Hunden der Gruppe A, 2/10 der Gruppe B und 9/18 der Gruppe C. Statistisch signifikante Unterschiede oder Effekte auf spätere Komplikationen waren nicht festzustellen. Schlussfolgerung: Zwischen den verschiedenen Lavagekonzepten bestanden keine statistisch signifikanten Unterschiede, doch wurde in der Kaltplasma-Gruppe die geringste Dekontamination erzielt. Klinische Relevanz: Bei Bissverletzungen ist von einer hohen Keimbelastung auszugehen. Zudem werden zunehmend multiresistente Isolate nachgewiesen. Basierend auf diesen ersten Ergebnissen ließ sich keine Überlegenheit von Polyhexanid oder Kaltplasma gegenüber physiologischer Kochsalzlösung zur Wundlavage nachweisen. Summary Objective: To evaluate the bacterial contamination rate and to compare the efficacy of polyhexanide, cold argon plasma and saline at reducing bacterial bio-burden in dog bite wounds. Material and methods: Dogs with bite-wound injuries were included when surgical debridement was pursued with subsequent treatment using either polyhexanide-biguanide lavage (A), cold argon plasma treatment (B) or saline lavage (C). Culture swabs were taken after debridement as well as after lavageor argon treatment. Statistical analysis was performed using the chi-square test. Results: A total of 40 dogs were enrolled in the study (A: n = 12; B: n = 10; C: n = 18). The majority of injuries were minor and 87.5% of patients had positive bacterial culture results pre-lavage, with 19.8% of isolates classified as multidrug resistant. A reduction in wound bioburden was achieved in 8/12 patients in group A, 5/10 patients in group B and 14/18 patients in group C. Complete decontamination was achieved in 5/12 patients in group A, 2/10 in group B and 9/18 in group C. None of these differences were statistically significant nor associated with the development of complications. Conclusion: No statistically significant differences were detected between the treatment groups; however, the cold argon plasma treatment provided the least effective decontamination. Clinical relevance: Bite wounds yield a high rate of bacterial contamination, with increasing multidrug-resistance rates. Based on these preliminary results, no superior effect was detected for lavage using polyhexanidebiguanide or cold argon plasma.

[1]  S. Reese,et al.  Assessment of wound bio-burden and prevalence of multi-drug resistant bacteria during open wound management. , 2016, The Journal of small animal practice.

[2]  A. Kramer,et al.  Antibacterial Activity of Cold Atmospheric Pressure Argon Plasma against 78 Genetically Different (mecA, luk-P, agr or Capsular Polysaccharide Type) Staphylococcus aureus Strains , 2016, Skin Pharmacology and Physiology.

[3]  M. Mahato,et al.  The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes , 2016, Scientific Reports.

[4]  P. Bhardwaj,et al.  Chlorhexidine Induces VanA-Type Vancomycin Resistance Genes in Enterococci , 2016, Antimicrobial Agents and Chemotherapy.

[5]  Qing‐Li Zhao,et al.  EPR-Spin Trapping and Flow Cytometric Studies of Free Radicals Generated Using Cold Atmospheric Argon Plasma and X-Ray Irradiation in Aqueous Solutions and Intracellular Milieu , 2015, PloS one.

[6]  S. Gorman,et al.  Bactericidal efficacy of atmospheric pressure non-thermal plasma (APNTP) against the ESKAPE pathogens. , 2015, International journal of antimicrobial agents.

[7]  P. McDermott,et al.  Characterization of antibiotic and disinfectant susceptibility profiles among Pseudomonas aeruginosa veterinary isolates recovered during 1994–2003 , 2015, Journal of applied microbiology.

[8]  G. Daeschlein Antimicrobial and antiseptic strategies in wound management , 2013, International wound journal.

[9]  Stephan Reuter,et al.  Plasmas for medicine , 2013 .

[10]  F. Banovic,et al.  In vitro comparison of the effectiveness of polihexanide and chlorhexidine against canine isolates of Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Malassezia pachydermatis. , 2013, Veterinary dermatology.

[11]  A. Kramer,et al.  Antimicrobial efficacy of non-thermal plasma in comparison to chlorhexidine against dental biofilms on titanium discs in vitro - proof of principle experiment. , 2011, Journal of clinical periodontology.

[12]  A. Kramer,et al.  The modified HET-CAM as a model for the assessment of the inflammatory response to tissue tolerable plasma. , 2011, Toxicology in vitro : an international journal published in association with BIBRA.

[13]  O. Assadian,et al.  Clinical Use of Polihexanide on Acute and Chronic Wounds for Antisepsis and Decontamination , 2010, Skin Pharmacology and Physiology.

[14]  K. Kaehn Polihexanide: A Safe and Highly Effective Biocide , 2010, Skin Pharmacology and Physiology.

[15]  A. Kramer,et al.  Standardized comparison of antiseptic efficacy of triclosan, PVP-iodine, octenidine dihydrochloride, polyhexanide and chlorhexidine digluconate. , 2010, The Journal of antimicrobial chemotherapy.

[16]  C. Vilela,et al.  Clinical and bacteriological assessment of dog-to-dog bite wounds. , 2010, Veterinary microbiology.

[17]  T. Kohlmann,et al.  Antiseptic Efficacy and Tolerance of Tissue-Tolerable Plasma Compared with Two Wound Antiseptics on Artificially Bacterially Contaminated Eyes from Commercially Slaughtered Pigs , 2010, Skin Pharmacology and Physiology.

[18]  F. Jacobsen,et al.  Antiseptics in Surgery , 2010, Eplasty.

[19]  M. Laroussi,et al.  Low-Temperature Plasmas for Medicine? , 2009, IEEE Transactions on Plasma Science.

[20]  A. Kramer,et al.  Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. , 2008, The Journal of antimicrobial chemotherapy.

[21]  J. Schoeman,et al.  The bacteriology and antimicrobial susceptibility of infected and non-infected dog bite wounds: fifty cases. , 2008, Veterinary microbiology.

[22]  O. Assadian From antiseptics to antibiotics – and back? , 2007, GMS Krankenhaushygiene interdisziplinar.

[23]  M. Fahie,et al.  Evidence-based wound management: a systematic review of therapeutic agents to enhance granulation and epithelialization. , 2007, The Veterinary clinics of North America. Small animal practice.

[24]  M. Allen,et al.  The response of Escherichia coli to exposure to the biocide polyhexamethylene biguanide. , 2006, Microbiology.

[25]  A. Kramer,et al.  Influence of the Antiseptic Agents Polyhexanide and Octenidine on FL Cells and on Healing of Experimental Superficial Aseptic Wounds in Piglets , 2004, Skin Pharmacology and Physiology.

[26]  D. E. Johnston,et al.  Dog bite wounds in dogs and cats: a retrospective study of 196 cases. , 2002, Journal of veterinary medicine. A, Physiology, pathology, clinical medicine.

[27]  D. Holt,et al.  Bite wounds in dogs and cats. , 2000, The Veterinary clinics of North America. Small animal practice.

[28]  J. N. Berg,et al.  Effects of four preparations of 0.05% chlorhexidine diacetate on wound healing in dogs. , 1992, Veterinary surgery : VS.

[29]  D. Dire,et al.  A comparison of wound irrigation solutions used in the emergency department. , 1990, Annals of emergency medicine.

[30]  R. Henderson,et al.  Effects of chlorhexidine diacetate and povidone-iodine on wound healing in dogs. , 1988, Veterinary surgery : VS.

[31]  C. Carozzo,et al.  Thoracic bite trauma in dogs and cats: a retrospective study of 65 cases , 2015, Veterinary and Comparative Orthopaedics and Traumatology.

[32]  J. Weese A review of multidrug resistant surgical site infections , 2008, Veterinary and Comparative Orthopaedics and Traumatology.

[33]  A. K. Cowell,et al.  Dog bite wounds: a study of 93 cases. , 1989 .

[34]  O. Petrini,et al.  Original Article Prevalence and Risk Factors for Carriage of Multi-drug Resistant Staphylococci in Healthy Cats and Dogs , 2022 .