Taming the beast: fluoromesityl groups induce a dramatic stability enhancement in boroles

Boroles with a fluoromesityl group on the B atom have greatly improved air stability compared to their mesityl analogues.

[1]  Khai Leok Chan,et al.  Organic non-fullerene acceptors for organic photovoltaics , 2011 .

[2]  K. Tamao,et al.  Dibenzoborole-Containing π-Electron Systems: Remarkable Fluorescence Change Based on the “On/Off” Control of the pπ−π* Conjugation , 2002 .

[3]  T. Kupfer,et al.  Direct functionalization at the boron center of antiaromatic chloroborole. , 2008, Chemical communications.

[4]  M. Yamashita Nucleophilicity of a base-stabilized borole anion at the boron center. , 2010, Angewandte Chemie.

[5]  Hiroshi Kageyama,et al.  Charge carrier transporting molecular materials and their applications in devices. , 2007, Chemical reviews.

[6]  TakahashiTamotsu,et al.  A Convenient Preparative Method of Dibromoterphenyl and Bis(bromophenyl)diene Monomers Using Zirconacyclopentadienes , 1999 .

[7]  T. Kupfer,et al.  Structural evidence for antiaromaticity in free boroles. , 2008, Angewandte Chemie.

[8]  A. Rheingold,et al.  Bora-aromatic systems. 12. Thermal generation and transformation of the borepin ring system: a paradigm of pericyclic processes , 1990 .

[9]  Christopher D. Entwistle,et al.  Synthesis and characterisation of some new boron compounds containing the 2,4,6-(CF3)3C6H2(fluoromes = Ar), 2,6-(CF3)2C6H3(fluoroxyl = Ar′), or 2,4-(CF3)2C6H3(Ar″) ligands , 2003 .

[10]  T. Kupfer,et al.  Recent developments in the chemistry of antiaromatic boroles. , 2011, Chemical communications.

[11]  T. Kupfer,et al.  The pentaphenylborole-2,6-lutidine adduct: a system with unusual thermochromic and photochromic properties. , 2011, Angewandte Chemie.

[12]  H. Braunschweig,et al.  An isolable radical anion based on the borole framework. , 2012, Angewandte Chemie.

[13]  K. Nozaki Chemistry: Not just any old anion , 2010, Nature.

[14]  T. Kupfer,et al.  Chemical reduction and dimerization of 1-chloro-2,3,4,5-tetraphenylborole. , 2010, Chemistry.

[15]  J. Ko,et al.  The role of borole in a fully conjugated electron-rich system. , 2004, Chemical communications.

[16]  Preston A. Chase,et al.  New Fluorinated 9-Borafluorene Lewis Acids , 2000 .

[17]  Robert M. Edkins,et al.  D-π-A triarylboron compounds with tunable push-pull character achieved by modification of both the donor and acceptor moieties. , 2015, Chemistry.

[18]  W. Piers,et al.  Photochemical synthesis of a ladder diborole: a new boron-containing conjugate material. , 2012, Angewandte Chemie.

[19]  F. Jäkle Advances in the synthesis of organoborane polymers for optical, electronic, and sensory applications. , 2010, Chemical reviews.

[20]  M. Wagner,et al.  Confirmed by X-ray crystallography: the B⋅B one-electron σ bond. , 2014, Angewandte Chemie.

[21]  T. B. Marder,et al.  Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics , 2004 .

[22]  B. Wrackmeyer,et al.  Organoborierung von alkinylstannanen: XVI. borol-synthese über die organoborierung von BIS(alknyl)Boranen , 1986 .

[23]  H. Braunschweig,et al.  Platinum substituted boroles. , 2010, Chemical communications.

[24]  A. Wakamiya,et al.  Synthesis and Structural Characterization of Pentaarylboroles and Their Dianions , 2008 .

[25]  T. Kupfer,et al.  Synthesis, structure, and reactivity of borole-functionalized ferrocenes. , 2012, Chemistry.

[26]  Christopher D. Entwistle,et al.  Boron chemistry lights the way: optical properties of molecular and polymeric systems. , 2002, Angewandte Chemie.

[27]  Rian D. Dewhurst,et al.  Evidence for extensive single-electron-transfer chemistry in boryl anions: isolation and reactivity of a neutral borole radical. , 2014, Angewandte Chemie.

[28]  Dominik Nied,et al.  The reduction chemistry of ferrocenylborole. , 2010, Angewandte Chemie.

[29]  W. Piers,et al.  Mechanistic studies on the metal-free activation of dihydrogen by antiaromatic pentarylboroles. , 2013, Journal of the American Chemical Society.

[30]  R. Lalancette,et al.  Highly electron-deficient and air-stable conjugated thienylboranes. , 2014, Angewandte Chemie.

[31]  Joan Vignolle,et al.  Perfluoropentaphenylborole: a new approach to Lewis acidic, electron-deficient compounds. , 2009, Angewandte Chemie.

[32]  R. Boese,et al.  Borole Dianions: Metalation of 1‐(Dialkylamino)‐2,5‐dihydro‐lH‐boroles and the Structure of Li2 (C4 H4 BNEt2)·TMEDA , 1990 .

[33]  G. Erker,et al.  Reactions of Boroles Formed by 1,1-Carboboration , 2015 .

[34]  S. Yamaguchi,et al.  Thiophene-fused ladder boroles with high antiaromaticity. , 2011, Journal of the American Chemical Society.

[35]  S. Yamaguchi,et al.  Electron-donating tetrathienyl-substituted borole. , 2012, Angewandte Chemie.

[36]  J. Eisch,et al.  Synthesis of pentaphenylborole, a potentially antiaromatic system , 1969 .

[37]  T. Kupfer,et al.  1-Heteroaromatic-substituted tetraphenylboroles: π-π interactions between aromatic and antiaromatic rings through a B-C bond. , 2012, Journal of the American Chemical Society.

[38]  T. Kupfer,et al.  Synthesis, coordination behavior, and reduction chemistry of cymantrenyl-1,3-bis(2,3,4,5-tetraphenyl)borole. , 2012, Chemistry.

[39]  F. Leroux Atropisomerism, Biphenyls, and Fluorine: A Comparison of Rotational Barriers and Twist Angles , 2004, Chembiochem : a European journal of chemical biology.

[40]  G. Erker,et al.  Borole formation by 1,1-carboboration. , 2014, Journal of the American Chemical Society.

[41]  J. E. Galle,et al.  Rearrangements of organometallic compounds. XIII. Boraaromatic systems. IV. Synthesis of heptaphenylborepin via the thermal rearrangement of heptaphenyl-7-borabicyclo[2.2.1]heptadiene , 1975 .

[42]  P. Fagan,et al.  Synthesis of boroles and their use in low-temperature Diels−Alder reactions with unactivated alkenes , 1988 .

[43]  H. Braunschweig,et al.  Antiaromaticity to aromaticity: from boroles to 1,2-azaborinines by ring expansion with azides. , 2014, Chemistry.

[44]  H. Braunschweig,et al.  Free Boroles: The Effect of Antiaromaticity on Their Physical Properties and Chemical Reactivity , 2013 .

[45]  G. Molander,et al.  Scope of the palladium-catalyzed aryl borylation utilizing bis-boronic acid. , 2012, Journal of the American Chemical Society.

[46]  Rosendo Valero,et al.  Consistent van der Waals radii for the whole main group. , 2009, The journal of physical chemistry. A.

[47]  J. E. Galle,et al.  Bora-aromatic systems. Part 8. The physical and chemical consequences of cyclic conjugation in boracyclopolyenes. The antiaromatic character of pentaarylboroles. , 1986, Journal of the American Chemical Society.

[48]  R. McDonald,et al.  Divergent Reactivity of Perfluoropentaphenylborole with Alkynes , 2010 .

[49]  Suning Wang,et al.  Enhancing electron accepting ability of triarylboron via pi-conjugation with 2,2'-bipy and metal chelation: 5,5'-bis(BMes(2))-2,2'-bipy and its metal complexes. , 2007, Journal of the American Chemical Society.

[50]  Andreas Steffen,et al.  Dibenzometallacyclopentadienes, boroles and selected transition metal and main group heterocyclopentadienes: Synthesis, catalytic and optical properties , 2010 .

[51]  Q. Peng,et al.  Synthesis and properties of B,N-bridged p-terphenyls. , 2014, Chemical communications.

[52]  W. Piers,et al.  Reaction of pentaarylboroles with carbon monoxide: an isolable organoboron carbonyl complex , 2012 .

[53]  B. Wrackmeyer,et al.  Organoborierung von alkinylstannanen : IV. Zur darstellung verschiedenartig substituierter 1-stannacyclopentadiene , 1978 .

[54]  A. Wakamiya,et al.  Kinetically stabilized dibenzoborole as an electron-accepting building unit. , 2008, Chemical communications.

[55]  T. Kupfer,et al.  Oligo(borolyl)benzenes--synthesis and properties. , 2012, Chemistry.

[56]  M. Wagner,et al.  Main-chain boron-containing oligophenylenes via ring-opening polymerization of 9-H-9-borafluorene. , 2011, Journal of the American Chemical Society.

[57]  W. Oschmann,et al.  Two Routes to Complex Derivatives of Borole , 1977 .

[58]  M. Wagner,et al.  A preorganized ditopic borane as highly efficient one- or two-electron trap. , 2015, Journal of the American Chemical Society.

[59]  T. Kupfer,et al.  Synthesis and structure of a carbene-stabilized pi-boryl anion. , 2010, Angewandte Chemie.