A complex network-based approach for interest point detection in images

This paper presents a new approach to detect interest points in digital images based on complex network theory. We propose a computable method according to the properties of complex network to each image. We associate a weighted network, analyze the degrees and communities of nodes and can provide visual display of the importance of different interest points in an image. The results show the approach can effectively detect interest points in images.

[1]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2002, IEEE Trans. Neural Networks.

[2]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[3]  John R. Smith,et al.  Image Classification and Querying Using Composite Region Templates , 1999, Comput. Vis. Image Underst..

[4]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Wei-Ying Ma,et al.  Learning similarity measure for natural image retrieval with relevance feedback , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[7]  Rachid Deriche,et al.  A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..

[8]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[9]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[10]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[12]  André Ricardo Backes,et al.  A complex network-based approach for boundary shape analysis , 2009, Pattern Recognit..

[13]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[14]  Luciano da Fontoura Costa,et al.  Multiscale skeletons by image foresting transform and its application to neuromorphometry , 2002, Pattern Recognit..

[15]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[16]  S. M. Steve SUSAN - a new approach to low level image processing , 1997 .

[17]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[18]  S. Redner How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.

[19]  Jitendra Malik,et al.  Shape matching and object recognition using shape contexts , 2010, 2010 3rd International Conference on Computer Science and Information Technology.

[20]  Luciano da Fontoura Costa Complex Networks, Simple Vision , 2004 .

[21]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[22]  W. Eric L. Grimson,et al.  Spatial template extraction for image retrieval by region matching , 2003, IEEE Trans. Image Process..

[23]  M. Newman,et al.  The structure of scientific collaboration networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  John Scott What is social network analysis , 2010 .