Implications of HESS Observations of Pulsar

In this review paper on pulsar wind nebulae (PWN) we discuss the properties of such nebulae within the context of containment against cross-field diffusion (versus normal advection), the effect of reverse shocks on the evolution of offset ``Vela-like'' PWN, constraints on maximum particle energetics, magnetic field strength estimates based on spectral and spatial properties, and the implication of such field estimates on the composition of the wind. A significant part of the discussion is based on the High Energy Stereoscopic System ({\it H.E.S.S.} or {\it HESS}) detection of the two evolved pulsar wind nebulae Vela X (cocoon) and HESS J1825-137. In the case of Vela X (cocoon) we also review evidence of a hadronic versus a leptonic interpretation, showing that a leptonic interpretation is favored for the {\it HESS} signal. The constraints discussed in this review paper sets a general framework for the interpretation of a number of offset, filled-center nebulae seen by {\it HESS}. These sources are found along the galactic plane with galactic latitudes $|b|\sim 0$, where significant amounts of molecular gas is found. In these regions, we find that the interstellar medium is inhomogeneous, which has an effect on the morphology of supernova shock expansion. One consequence of this effect is the formation of offset pulsar wind nebulae as observed.

[1]  Giuseppe Vacanti,et al.  The Spectrum of TeV Gamma Rays from the Crab Nebula , 1997 .

[2]  Peter A. R. Ade,et al.  American Astronomical Society Meeting , 2004 .

[3]  D. Milne Polarized radio filaments in the Vela X supernova remnant , 1995 .

[4]  G. Blumenthal,et al.  BREMSSTRAHLUNG, SYNCHROTRON RADIATION, AND COMPTON SCATTERING OF HIGH- ENERGY ELECTRONS TRAVERSING DILUTE GASES. , 1970 .

[5]  F. Aharonian,et al.  On the mechanisms of gamma radiation in the Crab Nebula , 1996 .

[6]  S. Reynolds,et al.  On the X-ray emission from Crab-like supernova remnants , 1984 .

[7]  V. Mangano,et al.  The extended hard X-ray emission from the Vela Plerion , 2005, astro-ph/0503261.

[8]  Felix Aharonian,et al.  Inverse Compton gamma radiation of faint synchrotron X-ray nebulae around pulsars , 1997 .

[9]  A. Noutsos,et al.  A New Population of Very High Energy Gamma-Ray Sources in the Milky Way , 2005, Science.

[10]  Felix Aharonian,et al.  Nucleonic gamma-ray production in Vela X , 2006 .

[11]  Tokyo Institute of Technology,et al.  Chandra Imaging of the X-Ray Nebula Powered by Pulsar B1509?58 , 2001, astro-ph/0110454.

[12]  E. D. Swaluw,et al.  Inferring Initial Spin Periods for Neutron Stars in Composite Remnants , 2001, astro-ph/0104390.

[13]  B. Gaensler,et al.  The evolution and structure of pulsar wind nebulae , 2006, astro-ph/0601081.

[14]  A. Lyne,et al.  A high-frequency survey of the galactic plane for young and distant pulsars. , 1992 .

[15]  for the H.E.S.S. Collaboration , 2003 .

[16]  C.-Y. NgRoger W. Romani Fitting pulsar wind tori , 2003 .

[17]  Vela X at 31 GHz , 2004, astro-ph/0405166.

[18]  R. Gould HIGH-ENERGY PHOTONS FROM THE COMPTON-SYNCHROTRON PROCESS IN THE CRAB NEBULA , 1965 .

[19]  C. Kennel,et al.  Magnetohydrodynamic model of Crab nebula radiation , 1984 .

[20]  D. Thompson,et al.  Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum , 1996 .

[21]  F. A. Aharonian TeV gamma rays from BL Lac Objects due to synchrotron radiation of extremely high energy protons , 2000 .

[23]  Andrea de Luca,et al.  A Multiwavelength Study of the Pulsar PSR B1929+10 and Its X-Ray Trail , 2005, astro-ph/0506545.

[24]  S. Bogovalov,et al.  Interaction of pulsar winds with interstellar medium: numerical simulation , 2005 .

[25]  John G. Kirk,et al.  Particle acceleration by ultrarelativistic shocks: theory and simulations , 2001, astro-ph/0107530.

[26]  F. Camilo,et al.  Young Neutron Stars and Their Environments , 2004 .

[27]  D. Helfand,et al.  New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58 , 2004, astro-ph/0405380.

[28]  T. Gaisser,et al.  Acceleration by pulsar winds in binary systems , 1990 .

[29]  V. Kaspi,et al.  XMM-Newton Observations of PSR B1823–13: An Asymmetric Synchrotron Nebula around a Vela-like Pulsar , 2002, astro-ph/0211359.

[30]  W. Becker,et al.  270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants , 2002 .

[31]  J. A. Hinton,et al.  The status of the HESS project , 2004 .

[32]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[33]  R. Sefako,et al.  Constraints on Pulsar Magnetospheric and Wind Parameters for the Compact Nebulae of Vela and PSR B1706–44 , 2003, astro-ph/0305119.

[34]  M. Rees,et al.  Induced Compton scattering in pulsar winds , 1978 .

[35]  The Plerionic Supernova Remnant G21.5-0.9: In and Out , 2005, astro-ph/0504369.

[36]  S. Buchner,et al.  The Nonthermal Radio, X-Ray, and TeV Gamma-Ray Spectra of MSH 15-52 , 1995 .

[37]  K. Bernlöhr,et al.  The H.E.S.S. Survey of the Inner Galaxy in Very High Energy Gamma Rays , 2005 .

[38]  J. Arons,et al.  Heating and Nonthermal Particle Acceleration in Relativistic, Transverse Magnetosonic Shock Waves in Proton-Electron-Positron Plasmas , 2006, astro-ph/0609034.

[39]  O. C. de Jager,et al.  Lower Limits on Pulsar Pair Production Multiplicities from H.E.S.S. Observations of Pulsar Wind Nebulae , 2007 .

[40]  F. Coroniti Magnetically Striped Relativistic Magnetohydrodynamic Winds: The Crab Nebula Revisited , 1990 .

[41]  J. Blondin,et al.  Pulsar Wind Nebulae in Evolved Supernova Remnants , 2001, astro-ph/0107076.

[42]  Zhi-Yun Li,et al.  The X-ray-emitting trail of the nearby pulsar PSR1929 + 10 , 1993, Nature.

[43]  O. C. de Jager,et al.  The expected high-energy to ultra-high-energy gamma-ray spectrum of the Crab Nebula , 1992 .

[44]  S. Reynolds,et al.  Evolution of pulsar-driven supernova remnants , 1981 .

[45]  J. Gunn,et al.  The Origin of the Magnetic Field and Relativistic Particles in the Crab Nebula , 1974 .