Using Detection, Tracking and Prediction in Visual SLAM to Achieve Real-time Semantic Mapping of Dynamic Scenarios

In this paper, we propose a lightweight system, RDS-SLAM, based on ORB-SLAM2, which can accurately estimate poses and build semantic maps at object level for dynamic scenarios in real time using only one commonly used Intel Core i7 CPU. In RDS-SLAM, three major improvements, as well as major architectural modifications, are proposed to overcome the limitations of ORB-SLAM2. Firstly, it adopts a lightweight object detection neural network in key frames. Secondly, an efficient tracking and prediction mechanism is embedded into the system to remove the feature points belonging to movable objects in all incoming frames. Thirdly, a semantic octree map is built by probabilistic fusion of detection and tracking results, which enables a robot to maintain a semantic description at object level for potential interactions in dynamic scenarios. We evaluate RDS-SLAM in TUM RGB-D dataset, and experimental results show that RDS-SLAM can run with 30.3 ms per frame in dynamic scenarios using only an Intel Core i7 CPU, and achieves comparable accuracy compared with the state-of-the-art SLAM systems which heavily rely on both Intel Core i7 CPUs and powerful GPUs.

[1]  Sergio Guadarrama,et al.  Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Daniel Cremers,et al.  StaticFusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[5]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[6]  Lourdes Agapito,et al.  MaskFusion: Real-Time Recognition, Tracking and Reconstruction of Multiple Moving Objects , 2018, 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[7]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[8]  Fabio Tozeto Ramos,et al.  Simple online and realtime tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[9]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[10]  Mark Sandler,et al.  MobileNetV2: Inverted Residuals and Linear Bottlenecks , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[11]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[13]  Stefan Leutenegger,et al.  SemanticFusion: Dense 3D semantic mapping with convolutional neural networks , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[14]  Javier Civera,et al.  DynaSLAM: Tracking, Mapping, and Inpainting in Dynamic Scenes , 2018, IEEE Robotics and Automation Letters.

[15]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[16]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[17]  Wolfram Burgard,et al.  OctoMap: an efficient probabilistic 3D mapping framework based on octrees , 2013, Autonomous Robots.

[18]  Lourdes Agapito,et al.  Co-fusion: Real-time segmentation, tracking and fusion of multiple objects , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[19]  Qi Wei,et al.  DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[20]  François Michaud,et al.  RTAB‐Map as an open‐source lidar and visual simultaneous localization and mapping library for large‐scale and long‐term online operation , 2018, J. Field Robotics.