Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser
暂无分享,去创建一个
David A. Ritchie | Stephan Hofmann | Harvey E. Beere | Long Xiao | Oleg Mitrofanov | Stephen J. Kindness | Philipp Braeuninger-Weimer | Riccardo Degl'Innocenti | H. Beere | D. Ritchie | S. Hofmann | O. Mitrofanov | P. Braeuninger-Weimer | R. Degl’Innocenti | Long Xiao | S. Kindness | R. Wallis | R. Wallis | Binbin Wei | B. Wei | Riccardo Degl | Innocenti
[1] R. J. Bell,et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.
[2] Joo-Hiuk Son,et al. Terahertz molecular resonance of cancer DNA , 2017, IRMMW-THz 2017.
[3] Abul K. Azad,et al. Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .
[4] R. J. Bell,et al. Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. , 1988, Applied optics.
[5] Cyril C. Renaud,et al. The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.
[6] P. Calvani,et al. Observation of Dirac plasmons in a topological insulator. , 2013, Nature nanotechnology.
[7] Abul K. Azad,et al. Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .
[8] M. Johnston,et al. Charge-Carrier Dynamics in 2D Hybrid Metal-Halide Perovskites. , 2016, Nano letters.
[9] Amaia Pesquera,et al. Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators , 2016, Nature Photonics.
[10] H. Bechtel,et al. Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.
[11] Yuan Ren,et al. Single mode terahertz quantum cascade amplifier , 2014 .
[12] H. Beere,et al. Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays , 2016 .
[13] Yah Leng Lim,et al. Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.
[14] Takashi Taniguchi,et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. , 2016, Nature nanotechnology.
[15] P. Wachter,et al. Optical Properties of GdS,GdSe,GdTeamd LaS , 1974 .
[16] B. Williams. Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.
[17] N. F. van Hulst,et al. Dynamic behaviour of tuning fork shear-force feedback , 1997 .
[18] Nader Engheta,et al. Transformation Optics Using Graphene , 2011, Science.
[19] Philippe Godignon,et al. Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.
[20] F. Keilmann,et al. Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.
[21] Edmund H. Linfield,et al. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser , 2016 .
[22] L. Sorba,et al. Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution , 2014 .
[23] O. Yazyev,et al. Polycrystalline graphene and other two-dimensional materials. , 2014, Nature nanotechnology.
[24] David A. Ritchie,et al. Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays , 2017 .
[25] P. Bøggild,et al. Graphene conductance uniformity mapping. , 2012, Nano letters.
[26] J. Aizpurua,et al. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. , 2008, Nano letters.
[27] W. J. Moore,et al. A low noise transimpedance amplifier for cryogenically cooled quartz tuning fork force sensors , 2002 .
[28] Yuan Ren,et al. Research data supporting "Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz" , 2016 .
[29] T. Ihn,et al. A low-temperature dynamic mode scanning force microscope operating in high magnetic fields , 1999, cond-mat/9901023.
[30] Jun Yan,et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.
[31] G. Shvets,et al. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces. , 2016, Nano letters.
[32] Yuan Ren,et al. Fast Modulation of Terahertz Quantum Cascade Lasers Using Graphene Loaded Plasmonic Antennas , 2016 .
[33] K. Karrai,et al. Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .
[34] Yah Leng Lim,et al. Self-Mixing Interferometry With Terahertz Quantum Cascade Lasers , 2013, IEEE Sensors Journal.
[35] Christopher C. Davis,et al. A phase-locked shear-force microscope for distance regulation in near-field optical microscopy , 1997 .
[36] David A. Ritchie,et al. Fast Terahertz imaging using a quantum cascade amplifier up to 20,000 pps , 2016 .
[37] O. Mitrofanov,et al. Hollow metallic waveguides integrated with terahertz quantum cascade lasers. , 2014, Optics express.
[38] Fritz Keilmann,et al. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .
[39] H. Beere,et al. Surface-emitting photonic crystal terahertz quantum cascade lasers , 2008 .
[40] Lucia Sorba,et al. Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging , 2017, Scientific Reports.
[41] H. Beere,et al. Differential near-field scanning optical microscopy with THz quantum cascade laser sources. , 2009, Optics express.
[42] R. J. Bell,et al. Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.
[43] Thomas E Murphy,et al. Tunable Terahertz Hybrid Metal-Graphene Plasmons. , 2015, Nano letters.