Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser

We present a terahertz (THz) scattering near-field optical microscope (s-SNOM) based on a quantum cascade laser implemented as both source and detector in a self-mixing scheme utilizing resonant quartz tuning forks as a sensitive nanopositioning element. The homemade s-SNOM, based on a resonant tuning fork and metallic tip, operates in tapping mode with a spatial resolution of ∼78 nm. The quantum cascade laser is realized from a bound-to-continuum active region design with a central emission of ∼2.85 THz, which has been lens-coupled in order to maximize the feedback into the laser cavity. Accordingly, the spatial resolution corresponds to >λ/1000. The s-SNOM has been used to investigate a bidimensional plasmonic photonic crystal and to observe the optical resonant modes supported by coupled plasmonic planar antennas, showing remarkable agreement with the theoretical predictions. The compactness, unique sensitivity, and fast acquisition capability of this approach make the proposed s-SNOM a unique tool for...

[1]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[2]  Joo-Hiuk Son,et al.  Terahertz molecular resonance of cancer DNA , 2017, IRMMW-THz 2017.

[3]  Abul K. Azad,et al.  Experimental demonstration of frequency-agile terahertz metamaterials , 2008 .

[4]  R. J. Bell,et al.  Optical properties of Al, Fe, Ti, Ta, W, and Mo at submillimeter wavelengths. , 1988, Applied optics.

[5]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[6]  P. Calvani,et al.  Observation of Dirac plasmons in a topological insulator. , 2013, Nature nanotechnology.

[7]  Abul K. Azad,et al.  Terahertz chiral metamaterials with giant and dynamically tunable optical activity , 2012 .

[8]  M. Johnston,et al.  Charge-Carrier Dynamics in 2D Hybrid Metal-Halide Perovskites. , 2016, Nano letters.

[9]  Amaia Pesquera,et al.  Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators , 2016, Nature Photonics.

[10]  H. Bechtel,et al.  Graphene plasmonics for tunable terahertz metamaterials. , 2011, Nature nanotechnology.

[11]  Yuan Ren,et al.  Single mode terahertz quantum cascade amplifier , 2014 .

[12]  H. Beere,et al.  Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays , 2016 .

[13]  Yah Leng Lim,et al.  Terahertz imaging through self-mixing in a quantum cascade laser. , 2011, Optics letters.

[14]  Takashi Taniguchi,et al.  Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy. , 2016, Nature nanotechnology.

[15]  P. Wachter,et al.  Optical Properties of GdS,GdSe,GdTeamd LaS , 1974 .

[16]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[17]  N. F. van Hulst,et al.  Dynamic behaviour of tuning fork shear-force feedback , 1997 .

[18]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[19]  Philippe Godignon,et al.  Optical nano-imaging of gate-tunable graphene plasmons , 2012, Nature.

[20]  F. Keilmann,et al.  Near-field probing of vibrational absorption for chemical microscopy , 1999, Nature.

[21]  Edmund H. Linfield,et al.  Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser , 2016 .

[22]  L. Sorba,et al.  Ultrafast multi-terahertz nano-spectroscopy with sub-cycle temporal resolution , 2014 .

[23]  O. Yazyev,et al.  Polycrystalline graphene and other two-dimensional materials. , 2014, Nature nanotechnology.

[24]  David A. Ritchie,et al.  Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays , 2017 .

[25]  P. Bøggild,et al.  Graphene conductance uniformity mapping. , 2012, Nano letters.

[26]  J. Aizpurua,et al.  Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. , 2008, Nano letters.

[27]  W. J. Moore,et al.  A low noise transimpedance amplifier for cryogenically cooled quartz tuning fork force sensors , 2002 .

[28]  Yuan Ren,et al.  Research data supporting "Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz" , 2016 .

[29]  T. Ihn,et al.  A low-temperature dynamic mode scanning force microscope operating in high magnetic fields , 1999, cond-mat/9901023.

[30]  Jun Yan,et al.  Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. , 2014, Nature nanotechnology.

[31]  G. Shvets,et al.  Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces. , 2016, Nano letters.

[32]  Yuan Ren,et al.  Fast Modulation of Terahertz Quantum Cascade Lasers Using Graphene Loaded Plasmonic Antennas , 2016 .

[33]  K. Karrai,et al.  Piezoelectric tip‐sample distance control for near field optical microscopes , 1995 .

[34]  Yah Leng Lim,et al.  Self-Mixing Interferometry With Terahertz Quantum Cascade Lasers , 2013, IEEE Sensors Journal.

[35]  Christopher C. Davis,et al.  A phase-locked shear-force microscope for distance regulation in near-field optical microscopy , 1997 .

[36]  David A. Ritchie,et al.  Fast Terahertz imaging using a quantum cascade amplifier up to 20,000 pps , 2016 .

[37]  O. Mitrofanov,et al.  Hollow metallic waveguides integrated with terahertz quantum cascade lasers. , 2014, Optics express.

[38]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[39]  H. Beere,et al.  Surface-emitting photonic crystal terahertz quantum cascade lasers , 2008 .

[40]  Lucia Sorba,et al.  Near-field terahertz probes with room-temperature nanodetectors for subwavelength resolution imaging , 2017, Scientific Reports.

[41]  H. Beere,et al.  Differential near-field scanning optical microscopy with THz quantum cascade laser sources. , 2009, Optics express.

[42]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[43]  Thomas E Murphy,et al.  Tunable Terahertz Hybrid Metal-Graphene Plasmons. , 2015, Nano letters.