PARALLEL LINEAR SYSTEMS SOLVERS: SPARSE ITERATIVE METHODS

Iterative methods are quite popular for the approximate solution of large sparse linear systems. As we will see, the are very well-suited for parallel computing. From this point of view we will discuss a number of methods, representative for the class of so-called Krylov subspace methods.

[1]  E. Desturler,et al.  Nested Krylov methods and preserving the orthogonality , 1993 .

[2]  Gérard Meurant Domain Decomposition Methods for Partial Differential Equations On Parallel Computers , 1988 .

[3]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[4]  L. Reichel,et al.  A Newton basis GMRES implementation , 1994 .

[5]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[6]  H. V. D. Vorst,et al.  The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors , 1991 .

[7]  Gérard Meurant,et al.  NUMERICAL EXPERIMENTS FOR THE PRECONDITIONED CONJUGATE GRADIENT METHOD ON THE CRAY X-MP/2 , 1984 .

[8]  S. Doi,et al.  Large-numbered multicolor milu preconditioning on sx-3/14 , 1992 .

[9]  M. Gijzen Iterative solution methods for linear equations in finite element computations , 1994 .

[10]  H. V. D. Vorst,et al.  High Performance Preconditioning , 1989 .

[11]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .

[12]  Harry Berryman,et al.  Krylov Methods Preconditioned with Incompletely Factored Matrices on the CM-2 , 1990, J. Parallel Distributed Comput..

[13]  O. Axelsson Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .

[14]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[15]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[16]  Yves Robert,et al.  Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor , 1989, Parallel Comput..

[17]  G. Meurant The block preconditioned conjugate gradient method on vector computers , 1984 .

[18]  James Demmel,et al.  Parallel numerical linear algebra , 1993, Acta Numerica.

[19]  O. Axelsson,et al.  A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .

[20]  Lianne G. C. Crone The conjugate gradient method on the Parsytec GCel-3/512 , 1995, Future Gener. Comput. Syst..

[21]  Takumi Washio,et al.  Parallel block preconditioning based on SSOR and MILU , 1994, Numer. Linear Algebra Appl..

[22]  O. Widlund A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .

[23]  Y. Saad,et al.  Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .

[24]  J. Ortega,et al.  SOR as a preconditioner , 1995 .

[25]  Jack J. Dongarra,et al.  Solving linear systems on vector and shared memory computers , 1990 .

[26]  Kang C. Jea,et al.  Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .

[27]  Y. Saad,et al.  Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .

[28]  Jack Dongarra,et al.  Performance of various computers using standard sparse linear equations solving techniques , 1993 .

[29]  Claude Pommerell,et al.  Solution of large unsymmetric systems of linear equations , 1992 .

[30]  P. K. W. Vinsome,et al.  Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .

[31]  Henk A. van der Vorst,et al.  A Vectorizable Variant of some ICCG Methods , 1982 .

[32]  E. De Sturler Iterative methods on distributed memory computers , 1994 .

[33]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[34]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[35]  Jack J. Dongarra,et al.  Performance of various computers using standard linear equations software in a Fortran environment , 1987, SGNM.

[36]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[37]  H. V. D. Vorst,et al.  Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .

[38]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[39]  Martin van Gijzen Parallel iterative solution methods for linear finite element computations on the Cray T3D , 1995, HPCN Europe.

[40]  D. R. Fokkema,et al.  BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .

[41]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[42]  P. Sonneveld CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .

[43]  H. V. D. Vorst,et al.  The superlinear convergence behaviour of GMRES , 1993 .

[44]  C.-C. Jay Kuo,et al.  Two-Color Fourier Analysis of Iterative Algorithms for Elliptic Problems with Red/Black Ordering , 1990, SIAM J. Sci. Comput..

[45]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[46]  Y. Saad,et al.  Krylov Subspace Methods on Supercomputers , 1989 .

[47]  Anthony T. Chronopoulos,et al.  s-step iterative methods for symmetric linear systems , 1989 .

[48]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .