PARALLEL LINEAR SYSTEMS SOLVERS: SPARSE ITERATIVE METHODS
暂无分享,去创建一个
[1] E. Desturler,et al. Nested Krylov methods and preserving the orthogonality , 1993 .
[2] Gérard Meurant. Domain Decomposition Methods for Partial Differential Equations On Parallel Computers , 1988 .
[3] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[4] L. Reichel,et al. A Newton basis GMRES implementation , 1994 .
[5] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[6] H. V. D. Vorst,et al. The convergence behaviour of preconditioned CG and CG-S in the presence of rounding errors , 1991 .
[7] Gérard Meurant,et al. NUMERICAL EXPERIMENTS FOR THE PRECONDITIONED CONJUGATE GRADIENT METHOD ON THE CRAY X-MP/2 , 1984 .
[8] S. Doi,et al. Large-numbered multicolor milu preconditioning on sx-3/14 , 1992 .
[9] M. Gijzen. Iterative solution methods for linear equations in finite element computations , 1994 .
[10] H. V. D. Vorst,et al. High Performance Preconditioning , 1989 .
[11] J. Meijerink,et al. An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .
[12] Harry Berryman,et al. Krylov Methods Preconditioned with Incompletely Factored Matrices on the CM-2 , 1990, J. Parallel Distributed Comput..
[13] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .
[14] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[15] Yousef Saad,et al. A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..
[16] Yves Robert,et al. Parallel conjugate gradient-like algorithms for solving sparse nonsymmetric linear systems on a vector multiprocessor , 1989, Parallel Comput..
[17] G. Meurant. The block preconditioned conjugate gradient method on vector computers , 1984 .
[18] James Demmel,et al. Parallel numerical linear algebra , 1993, Acta Numerica.
[19] O. Axelsson,et al. A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning , 1991 .
[20] Lianne G. C. Crone. The conjugate gradient method on the Parsytec GCel-3/512 , 1995, Future Gener. Comput. Syst..
[21] Takumi Washio,et al. Parallel block preconditioning based on SSOR and MILU , 1994, Numer. Linear Algebra Appl..
[22] O. Widlund. A Lanczos Method for a Class of Nonsymmetric Systems of Linear Equations , 1978 .
[23] Y. Saad,et al. Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .
[24] J. Ortega,et al. SOR as a preconditioner , 1995 .
[25] Jack J. Dongarra,et al. Solving linear systems on vector and shared memory computers , 1990 .
[26] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[27] Y. Saad,et al. Practical Use of Polynomial Preconditionings for the Conjugate Gradient Method , 1985 .
[28] Jack Dongarra,et al. Performance of various computers using standard sparse linear equations solving techniques , 1993 .
[29] Claude Pommerell,et al. Solution of large unsymmetric systems of linear equations , 1992 .
[30] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[31] Henk A. van der Vorst,et al. A Vectorizable Variant of some ICCG Methods , 1982 .
[32] E. De Sturler. Iterative methods on distributed memory computers , 1994 .
[33] I. Duff,et al. The effect of ordering on preconditioned conjugate gradients , 1989 .
[34] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[35] Jack J. Dongarra,et al. Performance of various computers using standard linear equations software in a Fortran environment , 1987, SGNM.
[36] Cornelis Vuik,et al. GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..
[37] H. V. D. Vorst,et al. Reducing the effect of global communication in GMRES( m ) and CG on parallel distributed memory computers , 1995 .
[38] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[39] Martin van Gijzen. Parallel iterative solution methods for linear finite element computations on the Cray T3D , 1995, HPCN Europe.
[40] D. R. Fokkema,et al. BiCGstab(ell) for Linear Equations involving Unsymmetric Matrices with Complex Spectrum , 1993 .
[41] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[42] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[43] H. V. D. Vorst,et al. The superlinear convergence behaviour of GMRES , 1993 .
[44] C.-C. Jay Kuo,et al. Two-Color Fourier Analysis of Iterative Algorithms for Elliptic Problems with Red/Black Ordering , 1990, SIAM J. Sci. Comput..
[45] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[46] Y. Saad,et al. Krylov Subspace Methods on Supercomputers , 1989 .
[47] Anthony T. Chronopoulos,et al. s-step iterative methods for symmetric linear systems , 1989 .
[48] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .