Identification of latent variables in a semantic odor profile database using principal component analysis.

Many classifications of odors have been proposed, but none of them have yet gained wide acceptance. Odor sensation is usually described by means of odor character descriptors. If these semantic profiles are obtained for a large diversity of compounds, the resulting database can be considered representative of odor perception space. Few of these comprehensive databases are publicly available, being a valuable source of information for fragrance research. Their statistical analysis has revealed that the underlying structure of odor space is high dimensional and not governed by a few primary odors. In a new effort to study the underlying sensory dimensions of the multivariate olfactory perception space, we have applied principal component analysis to a database of 881 perfume materials with semantic profiles comprising 82 odor descriptors. The relationships identified between the descriptors are consistent with those reported in similar studies and have allowed their classification into 17 odor classes.

[1]  Thomas Martinetz,et al.  On the dimensions of the olfactory perception space , 2004, Neurocomputing.

[2]  T. Higuchi,et al.  Multidimensional scaling of fragrances: A comparison between the verbal and non‐verbal methods of classifying fragrances1 , 2004 .

[3]  James M. Bower,et al.  Quantifying Olfactory Perception: Mapping Olfactory Perception Space by Using Multidimensional Scaling and Self-Organizing Maps , 2002, Neurocomputing.

[4]  L. Buck,et al.  Combinatorial Receptor Codes for Odors , 1999, Cell.

[5]  G. Burdock,et al.  Fenaroli's Handbook of Flavor Ingredients , 1997 .

[6]  Karen J. Rossiter,et al.  Structure−Odor Relationships , 1996 .

[7]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[8]  M. Chastrette,et al.  Analysis of a system of description of odors by means of four different multivariate statistical methods , 1991 .

[9]  M. Chastrette,et al.  A multidimensional statistical study of similarities between 74 notes used in perfumery , 1988 .

[10]  M. A. Jeltema,et al.  EVALUATION AND APPLICATIONS OF ODOR PROFILING , 1986 .

[11]  A Dravnieks,et al.  Odor quality: semantically generated multidimensional profiles are stable. , 1982, Science.

[12]  Susan S. Schiffman,et al.  Characterization of Odor Quality Utilizing Multidimensional Scaling Techniques , 1981 .

[13]  Howard R. Moskowitz,et al.  Odor Quality and Chemical Structure , 1981 .

[14]  Richard G. Davis Olfactory perceptual space models compared by quantitative methods , 1979 .

[15]  A. Dravnieks,et al.  Comparison of odors directly and through profiling , 1978 .

[16]  Moskowitz Hr,et al.  Profiling of odor components and their mixtures. , 1977 .

[17]  Masaaki Yoshida PSYCHOMETRIC CLASSIFICATION OF ODORS , 1975 .

[18]  H. Schutz,et al.  A MATCHING‐STANDARDS METHOD FOR CHARACTERIZING ODOR QUALITIES * , 1964, Annals of the New York Academy of Sciences.

[19]  B. FULLMAN,et al.  Stereochemical Theory of Olfaction , 1963, Nature.

[20]  Luca Turin,et al.  Structure-odor relations : a modern perspective , 2001 .

[21]  S. Arctander,et al.  Perfume And Flavor Chemicals: (Aroma Chemicals) , 2000 .

[22]  G. Ohloff,et al.  Structure-Odor Relationships , 1994 .

[23]  Yoshimasa Takahashi,et al.  Systemization of semantic descriptions of odors , 1990 .

[24]  J. Doré,et al.  Une organisation du champ des odeurs. II: Modèle descriptif de l'organisation de l'espace odorant , 1987 .

[25]  J. Doré,et al.  Une organisation du champ des odeurs. I: recherche de critères objectifs , 1987 .

[26]  M. Chastrette,et al.  Etude statistique multidimensionnelle des similarités entre 24 notes utilisées en parfumerie , 1986 .

[27]  H. Moskowitz,et al.  Profiling of odor components and their mixtures. , 1977, Sensory processes.

[28]  R. Harper,et al.  Odour description and odour classification: A multidisciplinary examination, , 1968 .

[29]  Réné Cerbelaud Formulaire de parfumerie , 1937 .