A review on meta-heuristics methods for estimating parameters of solar cells

Abstract Sun is considered as an important source of energy, and nowadays it is studied by researches from different areas. The current technologies are not able to convert solar energy into electricity with high performance. The tendency is to generate new methods that enhance the design of devices for solar energy conversion. Solar cells are devices that convert solar energy into electrical energy with low cost and easy large-scale manufacturing capabilities. However, such devices have a high degree of nonlinearity, and they possess parameters that must be accurately selected. Considering the above traditional computational methods are used to obtain solar cells parameters are cumbersome with many limitations. This paper presents a review of different meta-heuristics techniques, including Genetic Algorithms, Harmony Search, Artificial Bee Colony, Simulated Annealing, Cat Swarm Optimization, Differential Evolution, Particle Swarm Optimization, Advanced Bee Swarm Optimization, Whale Optimization Algorithm, Gravitational Search Algorithm, Flower Pollination Algorithm, Shuffled Complex Evolution, and Wind-Driven Optimization. Such methods are applied to solar cell parameters estimation which may be beneficial to enhance the efficiency of such devices. This study provides different comparisons to define which of them is the best alternative for solar cells design.

[1]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[2]  D. Devaraj,et al.  An Improved Differential Evolution algorithm for congestion management in the presence of wind turbine generators , 2018 .

[3]  Attia A. El-Fergany Efficient Tool to Characterize Photovoltaic Generating Systems Using Mine Blast Algorithm , 2015 .

[4]  Swellam W. Sharshir,et al.  Thermal performance and exergy analysis of solar stills – A review , 2017 .

[5]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[6]  J. McCall,et al.  Genetic algorithms for modelling and optimisation , 2005 .

[7]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[8]  Aboul Ella Hassanien,et al.  A Chaotic Improved Artificial Bee Colony for Parameter Estimation of Photovoltaic Cells , 2017 .

[9]  H. Sigmund,et al.  Analysis of the current-voltage characteristic of solar cells , 1986 .

[10]  Xudong Zhao,et al.  Applications of solar water heating system with phase change material , 2015 .

[11]  Yue Wang,et al.  An improved optimization technique for estimation of solar photovoltaic parameters , 2017 .

[12]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[13]  Swellam W. Sharshir,et al.  Applications of nanofluids in solar energy: A review of recent advances , 2018 .

[14]  Vishnu Prasad,et al.  Economic dispatch using particle swarm optimization: A review , 2009 .

[15]  Douglas H. Werner,et al.  The Wind Driven Optimization Technique and its Application in Electromagnetics , 2013, IEEE Transactions on Antennas and Propagation.

[16]  Swellam W. Sharshir,et al.  Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study , 2017 .

[17]  H. Beyer,et al.  Mapping the performance of PV modules, effects of module type and data averaging , 2010 .

[18]  D. Maskell,et al.  Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm , 2013 .

[19]  Aliakbar Akbarzadeh,et al.  A review of power generation with thermoelectric system and its alternative with solar ponds , 2018 .

[20]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[21]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[22]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[23]  Fernando Fausto,et al.  A Chaos-Embedded Gravitational Search Algorithm for the Identification of Electrical Parameters of Photovoltaic Cells , 2017 .

[24]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[25]  Anupriya Gogna,et al.  Metaheuristics: review and application , 2013, J. Exp. Theor. Artif. Intell..

[26]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[27]  Leandro dos Santos Coelho,et al.  An improved free search differential evolution algorithm: A case study on parameters identification of one diode equivalent circuit of a solar cell module , 2015 .

[28]  Hongxing Yang,et al.  Solar photovoltaic system modeling and performance prediction , 2014 .

[29]  Nor Ashidi Mat Isa,et al.  Advances in solar photovoltaic tracking systems: A review , 2018 .

[30]  Dinesh C. S. Bisht,et al.  A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm , 2015 .

[31]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[32]  Carlos Eduardo Camargo Nogueira,et al.  Software for designing solar water heating systems , 2016 .

[33]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[34]  A. H. Elsheikh,et al.  Review on applications of particle swarm optimization in solar energy systems , 2018, International Journal of Environmental Science and Technology.

[35]  Ishan Purohit,et al.  Technical and economic potential of concentrating solar thermal power generation in India , 2017 .

[36]  Mohammad Ali Abido,et al.  Parameter estimation for five- and seven-parameter photovoltaic electrical models using evolutionary algorithms , 2013, Appl. Soft Comput..

[37]  Roberto Álvarez Fernández,et al.  Fuel optimization strategy for hydrogen fuel cell range extender vehicles applying genetic algorithms , 2018 .

[38]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[39]  Chun Man Chan,et al.  Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm , 2018 .

[40]  M. Abd Elaziz,et al.  Modeling of solar energy systems using artificial neural network: A comprehensive review , 2019, Solar Energy.

[41]  Luong Le Dinh,et al.  Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem , 2013, TheScientificWorldJournal.

[42]  Xudong Zhao,et al.  Solar water heating: From theory, application, marketing and research , 2015 .

[43]  C. Chellaswamy,et al.  Parameter extraction of solar cell models based on adaptive differential evolution algorithm , 2016, Renewable Energy.

[44]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[45]  Ling Wang,et al.  Particle swarm optimization for function optimization in noisy environment , 2006, Appl. Math. Comput..

[46]  A. Laudani,et al.  Identification of the one-diode model for photovoltaic modules from datasheet values , 2014 .

[47]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[48]  Weifeng Gao,et al.  A modified artificial bee colony algorithm , 2012, Comput. Oper. Res..

[49]  Suhaidi Shafie,et al.  A review of transparent solar photovoltaic technologies , 2018, Renewable and Sustainable Energy Reviews.

[50]  Jingrui Zhang,et al.  A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints , 2016 .

[51]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[52]  Nitin Muttil,et al.  Shuffled Complex Evolution model calibrating algorithm: enhancing its robustness and efficiency , 2008 .

[53]  Chao Huang,et al.  A novel Elite Opposition-based Jaya algorithm for parameter estimation of photovoltaic cell models , 2018 .

[54]  J. Jervase,et al.  Solar cell parameter extraction using genetic algorithms , 2001 .

[55]  E. S. Ali,et al.  Implementation of flower pollination algorithm for solving economic load dispatch and combined economic emission dispatch problems in power systems , 2016 .

[56]  Jieming Ma,et al.  Comparative performance on photovoltaic model parameter identification via bio-inspired algorithms , 2016 .

[57]  Dexuan Zou,et al.  An improved differential evolution algorithm for the economic load dispatch problems with or without valve-point effects , 2016 .

[58]  V. Quaschning,et al.  Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells , 1996 .

[59]  Andrew J. Chipperfield,et al.  Simplifying Particle Swarm Optimization , 2010, Appl. Soft Comput..

[60]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[61]  Meiying Ye,et al.  Parameter extraction of solar cells using particle swarm optimization , 2009 .

[62]  Swellam W. Sharshir,et al.  Thin film technology for solar steam generation: A new dawn , 2019, Solar Energy.

[63]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[64]  Ahmed Fathy,et al.  Parameter estimation of photovoltaic system using imperialist competitive algorithm , 2017 .

[65]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[66]  Xianneng Li,et al.  Artificial bee colony algorithm with memory , 2016, Appl. Soft Comput..

[67]  Xin-She Yang,et al.  Variants of the Flower Pollination Algorithm: A Review , 2018 .

[68]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[69]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[70]  Fahad A. Al-Sulaiman,et al.  Review of recent developments and persistent challenges in stability of perovskite solar cells , 2018, Renewable and Sustainable Energy Reviews.

[71]  R. Rajesh,et al.  A comprehensive review of photovoltaic systems , 2015 .

[72]  Mohamed Abd Elaziz,et al.  Improved prediction of oscillatory heat transfer coefficient for a thermoacoustic heat exchanger using modified adaptive neuro-fuzzy inference system , 2019, International Journal of Refrigeration.