Interactive exploration of volume line integral convolution based on 3D-texture mapping

Line integral convolution (LIC) is an effective technique for visualizing vector fields. The application of LIC to 3D flow fields has yet been limited by difficulties to efficiently display and animate the resulting 3D-images. Texture-based volume rendering allows interactive visualization and manipulation of 3D-LIC textures. In order to ensure the comprehensive and convenient exploration of flow fields, we suggest interactive functionality including transfer functions and different clipping mechanisms. Thereby, we efficiently substitute the calculation of LIC based on sparse noise textures and show the convenient visual access of interior structures. Further on, we introduce two approaches for animating static 3D-flow fields without the computational expense and the immense memory requirements for pre-computed 3D-textures and without loss of interactivity. This is achieved by using a single 3D-LIC texture and a set of time surfaces as clipping geometries. In our first approach we use the clipping geometry to pre-compute a special 3D-LIC texture that can be animated by time-dependent color tables. Our second approach uses time volumes to actually clip the 3D-LIC volume interactively during rasterization. Additionally, several examples demonstrate the value of our strategy in practice.

[1]  Xiaoyang Mao,et al.  Line Integral Convolution for 3D Surfaces , 1997, Visualization in Scientific Computing.

[2]  Nelson Max,et al.  Texture splats for 3D scalar and vector field visualization , 1993, Proceedings Visualization '93.

[3]  Kwan-Liu Ma,et al.  Visualizing vector fields using line integral convolution and dye advection , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[4]  J. van Wijk,et al.  Spot noise texture synthesis for data visualization , 1991, SIGGRAPH.

[5]  Brian Cabral,et al.  Accelerated volume rendering and tomographic reconstruction using texture mapping hardware , 1994, VVS '94.

[6]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[7]  David L. Kao,et al.  UFLIC: a line integral convolution algorithm for visualizing unsteady flows , 1997 .

[8]  Eduard Gröller,et al.  Fast oriented line integral convolution for vector field visualization via the Internet , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[9]  Jeffrey P. M. Hultquist,et al.  Interactive numerical flow visualization using stream surfaces , 1996 .

[10]  David S. Ebert,et al.  Volume rendering methods for computational fluid dynamics visualization , 1994, Proceedings Visualization '94.

[11]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[12]  Nelson Max,et al.  Texture splats for 3D vector and scalar field visualization , 1993 .

[13]  Lisa K. Forssell Visualizing flow over curvilinear grid surfaces using line integral convolution , 1994, Proceedings Visualization '94.

[14]  Hans-Peter Seidel,et al.  Enhancing digital documents by including 3D-models , 1998, Comput. Graph..

[15]  W. Krueger The application of transport theory to visualization of 3D scalar data fields , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[16]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[17]  Thomas Ertl,et al.  Line Integral Convolution on triangulated surfaces , 1997 .

[18]  Rüdiger Westermann,et al.  An interactive visualization and navigation tool for medical volume data , 1999, Comput. Graph..

[19]  Theo van Walsum,et al.  Iconic techniques for feature visualization , 1995, Proceedings Visualization '95.

[20]  Victoria Interrante,et al.  Visualizing 3D Flow , 1998, IEEE Computer Graphics and Applications.

[21]  Rüdiger Westermann,et al.  Efficiently using graphics hardware in volume rendering applications , 1998, SIGGRAPH.

[22]  Martin Rumpf,et al.  Visualization of Time-Dependent Velocity Fields by Texture Transport , 1998, Visualization in Scientific Computing.

[23]  H. Hege,et al.  Fast Line Integral Convolution for Arbitrary Surfaces in 3D , 1997, VisMath.

[24]  Wilfrid Lefer,et al.  The motion map: efficient computation of steady flow animations , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[25]  Thomas Ertl,et al.  Intuitive and Interactive Manipulation of 3D Data Sets by Integrating Texture Mapping Based Volume Rendering into the OpenInventor Class Hierarchy , 1996, Bildverarbeitung für die Medizin.

[26]  Pat Hanrahan,et al.  Fast algorithms for volume ray tracing , 1992, VVS.

[27]  Lisa K. Forssell,et al.  Using Line Integral Convolution for Flow Visualization: Curvilinear Grids, Variable-Speed Animation, and Unsteady Flows , 1995, IEEE Trans. Vis. Comput. Graph..

[28]  Wolfgang Straßer,et al.  A compact volume rendering accelerator , 1994, VVS '94.

[29]  Hanspeter Pfister,et al.  Cube-4-a scalable architecture for real-time volume rendering , 1996, Proceedings of 1996 Symposium on Volume Visualization.

[30]  Wolfgang Krüger The application of transport theory to visualization of 3D scalar data fields , 1990, VIS '90.

[31]  Nelson L. Max,et al.  Flow volumes for interactive vector field visualization , 1993, Proceedings Visualization '93.

[32]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[33]  Hans-Christian Hege,et al.  Fast LIC with Piecewise Polynomial Filter Kernels , 1997, VisMath.

[34]  Hans-Christian Hege,et al.  Parallel Line Integral Convolution , 1997, Parallel Comput..

[35]  Hans-Christian Hege,et al.  Fast and resolution independent line integral convolution , 1995, SIGGRAPH.