Brown measures of unbounded operators affiliated with a finite von Neumann algebra
暂无分享,去创建一个
[1] Hideki Kosaki,et al. Generalized s-numbers of τ-measurable operators , 1986 .
[2] P. Biane,et al. Computation of some examples of Brown's spectral measure in free probability , 1999, math/9912242.
[3] Alexandru Nica,et al. R-diagonal pairs - a common approach to Haar unitaries and circular elements , 1996 .
[4] Uffe Haagerup,et al. A new application of random matrices: Ext(C^*_{red}(F_2)) is not a group , 2002 .
[5] MOMENT FORMULAS FOR THE QUASI-NILPOTENT DT-OPERATOR , 2004, math/0406170.
[6] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[7] Invariant subspaces for operators in a general II1-factor , 2006, math/0611256.
[8] F. Larsen,et al. POWERS OF R-DIAGONAL ELEMENTS , 2002 .
[9] U. Haagerup,et al. Brown's Spectral Distribution Measure for R-Diagonal Elements in Finite von Neumann Algebras☆ , 2000 .
[10] Alexandru Nica,et al. Free random variables , 1992 .
[11] Bent Fuglede,et al. DETERMINANT THEORY IN FINITE FACTORS , 1952 .
[12] Samuel M. Selby,et al. CRC Handbook of tables for Mathematics , 1967 .
[13] DT-operators and decomposability of Voiculescu's circular operator , 2002, math/0205077.