Scaling for selectivity in finite nanopores for 1:1 electrolytes: the dependence of predictability of device behavior on system parameters

[1]  Dávid Fertig,et al.  The Dukhin number as a scaling parameter for selectivity in the infinitely long nanopore limit: extension to multivalent electrolytes , 2022, Journal of Molecular Liquids.

[2]  D. Boda,et al.  Scaling for rectification of bipolar nanopores as a function of a modified Dukhin number: the case of 1:1 electrolytes , 2021, Molecular Simulation.

[3]  D. Boda,et al.  From nanotubes to nanoholes: Scaling of selectivity in uniformly charged nanopores through the Dukhin number for 1:1 electrolytes. , 2021, The Journal of chemical physics.

[4]  R. Netz,et al.  Fluids at the Nanoscale: From Continuum to Subcontinuum Transport , 2020, Annual Review of Fluid Mechanics.

[5]  N. Aluru,et al.  Ion Transport in Electrically Imperfect Nanopores. , 2020, ACS nano.

[6]  D. Gillespie,et al.  Scaling Behavior of Bipolar Nanopore Rectification with Multivalent Ions , 2019, The Journal of Physical Chemistry C.

[7]  Ping Yu,et al.  Ion current rectification: from nanoscale to microscale , 2019, Science China Chemistry.

[8]  Sara Dal Cengio,et al.  Confinement-controlled rectification in a geometric nanofluidic diode. , 2019, The Journal of chemical physics.

[9]  L. Bocquet,et al.  Beyond the Tradeoff: Dynamic Selectivity in Ionic Transport and Current Rectification. , 2019, The journal of physical chemistry. B.

[10]  Laibing Jia,et al.  Entrance Effects Induced Rectified Ionic Transport in a Nanopore/Channel. , 2017, ACS sensors.

[11]  M. Wolfram,et al.  Multiscale modeling of a rectifying bipolar nanopore: Comparing Poisson-Nernst-Planck to Monte Carlo. , 2017, The Journal of chemical physics.

[12]  Moran Wang,et al.  Fundamentals and Modeling of Electrokinetic Transport in Nanochannels , 2014 .

[13]  M. Wolfram,et al.  Rectification properties of conically shaped nanopores: consequences of miniaturization. , 2012, Physical chemistry chemical physics : PCCP.

[14]  A. Biance,et al.  Large apparent electric size of solid-state nanopores due to spatially extended surface conduction. , 2012, Nano letters.

[15]  D. Gillespie,et al.  Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations. , 2012, Journal of chemical theory and computation.

[16]  S. Chakraborty,et al.  Effect of conductivity variations within the electric double layer on the streaming potential estimation in narrow fluidic confinements. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[17]  Thomas A. Zangle,et al.  Theory and experiments of concentration polarization and ion focusing at microchannel and nanochannel interfaces. , 2010, Chemical Society reviews.

[18]  S. Dukhin,et al.  Non-equilibrium electric surface phenomena , 1993 .

[19]  R. J. Hunter,et al.  The electrophoretic mobility of large colloidal particles , 1981 .

[20]  J. Valleau,et al.  Primitive model electrolytes. I. Grand canonical Monte Carlo computations , 1980 .

[21]  A. L. Loeb,et al.  Calculation of the electrophoretic mobility of a spherical colloid particle , 1966 .

[22]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle , 1978 .

[23]  J. Bikerman Electrokinetic equations and surface conductance. A survey of the diffuse double layer theory of colloidal solutions , 1940 .

[24]  M. Planck,et al.  Ueber die Erregung von Electricität und Wärme in Electrolyten , 1890 .

[25]  W. Nernst Zur Kinetik der in Lösung befindlichen Körper , 1888 .