Process Ordering in a Process Calculus for Spatially-Explicit Ecological Models

In this paper we extend palps, a process calculus proposed for the spatially-explicit individual-based modeling of ecological systems, with the notion of a policy. A policy is an entity for specifying orderings between the different activities within a system. It is defined externally to a palps model as a partial order which prescribes the precedence order between the activities of the individuals of which the model is comprised. The motivation for introducing policies is twofold: one the one hand, policies can help to reduce the state-space of a model; on the other hand, they are useful for exploring the behavior of an ecosystem under different assumptions on the ordering of events within the system. To take account of policies, we refine the semantics of palps via a transition relation which prunes away executions that do not respect the defined policy. Furthermore, we propose a translation of palps into the probabilistic model checker prism. We illustrate our framework by applying prism on palps models with policies for conducting simulation and reachability analysis.

[1]  Camilo Rueda,et al.  NTCCRT: A concurrent constraint framework for soft-real time music interaction , 2015 .

[2]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[3]  Paolo Milazzo,et al.  A Calculus of Looping Sequences for Modelling Microbiological Systems , 2006, Fundam. Informaticae.

[4]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[5]  Myriam Desainte-Catherine,et al.  An Extension of Interactive Scores for Multimedia Scenarios with Temporal Relations for Micro and Macro Controls , 2015, ArXiv.

[6]  Giovanni Pardini,et al.  Formal Modelling and Simulation of Biological Systems with Spatiality , 2011 .

[7]  Anna Philippou,et al.  Mean-Field Semantics for a Process Calculus for Spatially-Explicit Ecological Models , 2016, DCM.

[8]  Paolo Milazzo,et al.  Modular Verification of Interactive Systems with an Application to Biology , 2010, CS2Bio.

[9]  Rance Cleaveland,et al.  Priority in Process Algebra , 2001, Handbook of Process Algebra.

[10]  Mario J. Pérez-Jiménez,et al.  A Study of the Robustness of the EGFR Signalling Cascade Using Continuous Membrane Systems , 2005, IWINAC.

[11]  Graeme D. Ruxton,et al.  The need for biological realism in the updating of cellular automata models , 1998 .

[12]  Qiuwen Chen,et al.  Cellular-automata-based ecological and ecohydraulics modelling , 2009 .

[13]  Catuscia Palamidessi,et al.  Model Checking Probabilistic and Stochastic Extensions of the π-Calculus , 2009, IEEE Transactions on Software Engineering.

[14]  A. Salomaa,et al.  Current Trends in Theoretical Computer Science, Entering the 21th Century , 2001 .

[15]  Roberto Barbuti,et al.  Spatial Calculus of Looping Sequences , 2009, FBTC@ICALP.

[16]  Mario J. Pérez-Jiménez,et al.  A computational modeling for real ecosystems based on P systems , 2011, Natural Computing.

[17]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[18]  Camilo Rueda,et al.  An Overview of FORCES: An INRIA Project on Declarative Formalisms for Emergent Systems , 2009, ICLP.

[19]  Carron Shankland,et al.  Process Algebra Models of Population Dynamics , 2008, AB.

[20]  Mauricio Toro Bermudez Probabilistic Extension to the Concurrent Constraint Factor Oracle model for Music Improvisation , 2009 .

[21]  Stephen Gilmore,et al.  The PEPA Workbench: A Tool to Support a Process Algebra-based Approach to Performance Modelling , 1994, Computer Performance Evaluation.

[22]  Giancarlo Mauri,et al.  An Analysis on the Influence of Network Topologies on Local and Global Dynamics of Metapopulation Systems , 2010, AMCA-POP.

[23]  D S Broomhead,et al.  Relating individual behaviour to population dynamics , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[24]  Mauricio Toro Structured Interactive Musical Scores , 2010, ICLP.

[25]  Camilo Rueda,et al.  Formal semantics for interactive music scores: a framework to design, specify properties and execute interactive scenarios , 2014 .

[26]  Camilo Rueda,et al.  Ntccrt: A Concurrent Constraint Framework for Real-Time Interaction , 2009, ICMC.

[27]  Chris M. N. Tofts,et al.  Processes with probabilities, priority and time , 1994, Formal Aspects of Computing.

[28]  Shih Ching Fu,et al.  A Flexible Automata Model for Disease Simulation , 2004, ACRI.

[29]  Mario J. Pérez-Jiménez,et al.  A P System Based Model of an Ecosystem of Some Scavenger Birds , 2009, Workshop on Membrane Computing.

[30]  Gheorghe Paun Computing with Membranes (P Systems): An Introduction , 2001, Current Trends in Theoretical Computer Science.

[31]  L. Berec Techniques of spatially explicit individual-based models: construction, simulation, and mean-field analysis , 2002 .

[32]  Mauricio Toro Structured Interactive Music Scores , 2015, ArXiv.

[33]  Marta Z. Kwiatkowska,et al.  Automated Verification Techniques for Probabilistic Systems , 2011, SFM.

[34]  Giancarlo Mauri,et al.  Dynamical probabilistic P systems , 2006, Int. J. Found. Comput. Sci..

[35]  Camilo Rueda,et al.  Concurrent constraints models of music interaction , 2011 .

[36]  Mauricio Toro-Bermudez,et al.  Structured interactive scores : from a structural description of a multimedia scenario to a real-time capable implementation with formal semantics , 2012 .

[37]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[38]  Anna Philippou,et al.  Simulation and Verification in a Process Calculus for Spatially-Explicit Ecological Models , 2013, Sci. Ann. Comput. Sci..

[39]  Carron Shankland,et al.  From individuals to populations: A mean field semantics for process algebra , 2011, Theor. Comput. Sci..

[40]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[41]  Luca Cardelli,et al.  Stochastic Pi-calculus Revisited , 2013, ICTAC.

[42]  Giancarlo Mauri,et al.  Modelling metapopulations with stochastic membrane systems , 2008, Biosyst..

[44]  Anna Philippou,et al.  Synchronous Parallel Composition in a Process Calculus for Ecological Models , 2014, ICTAC.

[45]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[46]  L. Gerber,et al.  Implications of three viability models for the conservation status of the western population of Steller sea lions (Eumetopias jubatus) , 2001 .

[47]  Luca Cardelli,et al.  Brane Calculi Interactions of Biological Membranes , 2004 .

[48]  T. Dawson,et al.  Long-distance plant dispersal and habitat fragmentation: identifying conservation targets for spatial landscape planning under climate change , 2005 .

[49]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[50]  Livio Bioglio,et al.  A Spatial Calculus of Wrapped Compartments , 2011, ArXiv.

[51]  Myriam Desainte-Catherine,et al.  A Model for Interactive Scores with Temporal Constraints and Conditional Branching , 2015, ArXiv.

[52]  Diego Latella,et al.  Rate-Based Transition Systems for Stochastic Process Calculi , 2009, ICALP.

[53]  Mauricio Toro,et al.  Towards a correct and efficient implementation of simulation and verification tools for probabilistic ntcc , 2018, ArXiv.

[54]  A. Graham,et al.  Using process algebra to develop predator-prey models of within-host parasite dynamics. , 2013, Journal of theoretical biology.