Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature

[1]  S. Moldovan,et al.  Design of core–shell titania–heteropolyacid–metal nanocomposites for photocatalytic reduction of CO2 to CO at ambient temperature , 2019, Nanoscale advances.

[2]  Jinhua Ye,et al.  Solar-Energy-Mediated Methane Conversion , 2019, Joule.

[3]  Jinlong Zhang,et al.  Ga-Doped and Pt-Loaded Porous TiO2-SiO2 for Photocatalytic Nonoxidative Coupling of Methane. , 2019, Journal of the American Chemical Society.

[4]  Hyun-Seog Roh,et al.  A review on dry reforming of methane in aspect of catalytic properties , 2019, Catalysis Today.

[5]  A. Khodakov,et al.  Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites , 2019, Nature Communications.

[6]  S. Takenaka,et al.  Photoelectrochemical Homocoupling of Methane under Blue Light Irradiation , 2019, ACS Energy Letters.

[7]  M. Kanai Photocatalytic upgrading of natural gas , 2018, Science.

[8]  Junhao Huang,et al.  Positive effects of phosphotungstic acid on the in-situ solid-state polymerization and visible light photocatalytic activity of polyimide-based photocatalyst , 2018, Applied Catalysis B: Environmental.

[9]  M. Petković,et al.  Mechanistic insights on how hydroquinone disarms OH and OOH radicals , 2018 .

[10]  Xuxu Wang,et al.  Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces , 2018 .

[11]  Fanxing Li,et al.  Perovskite nanocomposites as effective CO2-splitting agents in a cyclic redox scheme , 2017, Science Advances.

[12]  Danzhen Li,et al.  Direct combination of hydrogen evolution from water and methane conversion in a photocatalytic system over Pt/TiO2 , 2017 .

[13]  Y. Pagán-Torres,et al.  Advances in methane conversion processes , 2017 .

[14]  T. Andreu,et al.  Controlled Photocatalytic Oxidation of Methane to Methanol through Surface Modification of Beta Zeolites , 2017 .

[15]  Danzhen Li,et al.  Photocatalytic methane conversion coupled with hydrogen evolution from water over Pd/TiO2 , 2017 .

[16]  E. Kondratenko,et al.  Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation , 2017 .

[17]  C. Detavernier,et al.  Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle , 2016, Science.

[18]  S. Linic,et al.  A Viewpoint on Direct Methane Conversion to Ethane and Ethylene Using Oxidative Coupling on Solid Catalysts , 2016 .

[19]  M. Brucker,et al.  The Past and the Future. , 2016, Nursing for women's health.

[20]  Kamil Kaygusuz,et al.  Global energy issues, climate change and wind power for clean and sustainable energy development , 2015 .

[21]  Guy Marin,et al.  Combined chemical looping for energy storage and conversion , 2015 .

[22]  Tianqi Wang,et al.  Enhanced photoconductivity of a polyoxometalate–TiO2 composite for gas sensing applications , 2015 .

[23]  T. Andreu,et al.  Partial Oxidation of Methane to Methanol Using Bismuth-Based Photocatalysts , 2014 .

[24]  Ding Ma,et al.  Methane activation: the past and future , 2014 .

[25]  Jianshe Liu,et al.  Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. , 2014, Chemical Society reviews.

[26]  Saurabh Bhavsar,et al.  Chemical looping: To combustion and beyond , 2014 .

[27]  Panagiotis Grammelis,et al.  Calcium looping for CO2 capture from a lignite fired power plant , 2013 .

[28]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .

[29]  E. McFarland Unconventional Chemistry for Unconventional Natural Gas , 2012, Science.

[30]  K. Nouneh,et al.  XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth , 2012 .

[31]  C. Hammond,et al.  Oxidative methane upgrading. , 2012, ChemSusChem.

[32]  Cecilia Mondelli,et al.  Biobased Chemicals from Conception toward Industrial Reality: Lessons Learned and To Be Learned , 2012 .

[33]  Kaixue Wang,et al.  Synergistic effect on the photoactivation of the methane C-H bond over Ga(3+)-modified ETS-10. , 2012, Angewandte Chemie.

[34]  Juan Adánez,et al.  Progress in chemical-looping combustion and reforming technologies , 2012 .

[35]  J. Barber,et al.  Recent advances in hybrid photocatalysts for solar fuel production , 2012 .

[36]  Martin Holena,et al.  Statistical Analysis of Past Catalytic Data on Oxidative Methane Coupling for New Insights into the Composition of High‐Performance Catalysts , 2011 .

[37]  Kaixue Wang,et al.  Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn(+)-modified zeolite. , 2011, Angewandte Chemie.

[38]  C. Christensen,et al.  Zeolite-catalyzed biomass conversion to fuels and chemicals , 2011 .

[39]  T. Gunnoe,et al.  Catalytic oxy-functionalization of methane and other hydrocarbons: fundamental advancements and new strategies. , 2011, ChemSusChem.

[40]  B. Tatarchuk,et al.  Surface characterization of Ag/Titania adsorbents , 2010 .

[41]  K. Kalishwaralal,et al.  Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis , 2008 .

[42]  L. Yuliati,et al.  Photocatalytic nonoxidative coupling of methane on gallium oxide and silica-supported gallium oxide , 2008 .

[43]  L. Yuliati,et al.  Photocatalytic conversion of methane. , 2008, Chemical Society reviews.

[44]  T. Choudhary,et al.  Energy-efficient syngas production through catalytic oxy-methane reforming reactions. , 2008, Angewandte Chemie.

[45]  L. Yuliati,et al.  Photoactive sites on pure silica materials for nonoxidative direct methane coupling , 2006 .

[46]  L. Yuliati,et al.  Highly dispersed Ce(III) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. , 2005, Chemical communications.

[47]  Z. Yamani,et al.  Photocatalytic transformation of methane into methanol under UV laser irradiation over WO3, TiO2 and NiO catalysts , 2004 .

[48]  H. Yoshida,et al.  Active Ag species in MFI zeolite for direct methane conversion in the light and dark , 2003 .

[49]  J. Lunsford CATALYTIC CONVERSION OF METHANE TO MORE USEFUL CHEMICALS AND FUELS: A CHALLENGE FOR THE 21ST CENTURY , 2000 .

[50]  Max Shtein,et al.  Structure and Electronic Properties of Solid Acids Based on Tungsten Oxide Nanostructures , 1999 .

[51]  Z. Stansch,et al.  Comprehensive Kinetics of Oxidative Coupling of Methane over the La2O3/CaO Catalyst , 1997 .

[52]  J. Lunsford The Catalytic Oxidative Coupling of Methane , 1995 .

[53]  R. Weber Effect of Local Structure on the UV-Visible Absorption Edges of Molybdenum Oxide Clusters and Supported Molybdenum Oxides , 1995 .

[54]  A. Gonzalez-Elipe,et al.  “In situ” XPS study of the photoassisted reduction of noble-metal cations on TiO2 , 1993 .

[55]  Kuo Evaluation of direct methane conversion to higher hydrocarbons and oxygenates: Final report , 1989 .

[56]  M. Seah,et al.  AES: Energy calibration of electron spectrometers. I—an absolute, traceable energy calibration and the provision of atomic reference line energies , 1984 .

[57]  G. Ozin,et al.  Selective photoactivation of carbon-hydrogen bonds in paraffinic hydrocarbons. Dimerization of alkanes , 1982 .

[58]  Nicholas Winograd,et al.  Initial and final state effects in the ESCA spectra of cadmium and silver oxides , 1977 .

[59]  E. P. Parry,et al.  An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity , 1963 .

[60]  Peter J. Ell,et al.  The Challenge of the 21st Century , 1999 .

[61]  G. E. Keller,et al.  Synthesis of ethylene via oxidative coupling of methane: I. Determination of active catalysts , 1982 .

[62]  C. Wagner Energy Calibration of Electron Spectrometers , 1980 .