Hierarchical visual data mining for large-scale data

SummaryAn increasingly important problem in exploratory data analysis and visualization is that of scale; more and more data sets are much too large to analyze using traditional techniques, either in terms of the number of variables or the number of records. One approach to addressing this problem is the development and use of multiresolution strategies, where we represent the data at different levels of abstraction or detail through aggregation and summarization. In this paper we present an overview of our recent and current activities in the development of a multiresolution exploratory visualization environment for large-scale multivariate data. We have developed visualization, interaction, and data management techniques for effectively dealing with data sets that contain millions of records and/or hundreds of dimensions, and propose methods for applying similar approaches to extend the system to handle nominal as well as ordinal data.

[1]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[2]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[3]  I. Jolliffe Principal Component Analysis , 2002 .

[4]  Graham J. Wills,et al.  An interactive view for hierarchical clustering , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[5]  Matthew Chalmers,et al.  Domesticating Bead: adapting an information visualization system to a financial institution , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[6]  Matthew O. Ward,et al.  Interactive hierarchical displays: a general framework for visualization and exploration of large multivariate data sets , 2003, Comput. Graph..

[7]  Matthew O. Ward,et al.  Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces , 2000, IEEE Trans. Vis. Comput. Graph..

[8]  Matthew O. Ward,et al.  Navigating hierarchies with structure-based brushes , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[9]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[10]  Matthew O. Ward,et al.  Scalable Visual Hierarchy Exploration , 2000, DEXA.

[11]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[13]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[14]  Samuel Kaski,et al.  Dimensionality reduction by random mapping: fast similarity computation for clustering , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[15]  Andrew W. Mead Review of the Development of Multidimensional Scaling Methods , 1992 .

[16]  James A. Wise The ecological approach to text visualization , 1999 .

[17]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[18]  Edward J. Wegman,et al.  High Dimensional Clustering Using Parallel Coordinates and the Grand Tour , 1997 .

[19]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.