Convergence of the uniaxial PML method for time-domain electromagnetic scattering problems

In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the $L^2$-norm and $L^{\infty}$-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).

[1]  Zhiming,et al.  An Adaptive Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems , 2008 .

[2]  Zhiming Chen,et al.  An adaptive anisotropic perfectly matched layer method for 3-D time harmonic electromagnetic scattering problems , 2013, Numerische Mathematik.

[3]  G. Bao,et al.  Time-Domain Analysis of an Acoustic–Elastic Interaction Problem , 2018 .

[4]  Jiaqing Yang,et al.  A Time-dependent Interaction Problem Between an Electromagnetic Field and an Elastic Body , 2020 .

[5]  G. Hsiao,et al.  Time‐dependent fluid‐structure interaction , 2014, 1406.2171.

[6]  Peijun Li,et al.  Analysis of Transient Electromagnetic Scattering from a Three-Dimensional Open Cavity , 2015, SIAM J. Appl. Math..

[7]  Joseph E. Pasciak,et al.  Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem , 2008, Math. Comput..

[8]  Zhiming Chen,et al.  An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..

[9]  Peijun Li,et al.  Analysis of Transient Acoustic-Elastic Interaction in an Unbounded Structure , 2016, SIAM J. Math. Anal..

[10]  Jiaqing Yang,et al.  Analysis of a time-dependent fluid-solid interaction problem above a local rough surface , 2018, Science China Mathematics.

[11]  Gang Bao,et al.  Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..

[12]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..

[13]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[14]  Xiaohui Zhang,et al.  Convergence of the PML method for elastic wave scattering problems , 2016, Math. Comput..

[15]  A. M. Cohen Numerical Methods for Laplace Transform Inversion , 2007 .

[16]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[17]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[18]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[19]  A. Buffa,et al.  On traces for H(curl,Ω) in Lipschitz domains , 2002 .

[20]  Zhiming Chen,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information Convergence of the Time-domain Perfectly Matched Layer Method for Acoustic Scattering Problems , 2022 .

[21]  Zhiming Chen,et al.  Long-Time Stability and Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Domain Acoustic Scattering Problems , 2012, SIAM J. Numer. Anal..

[22]  Bo Zhang,et al.  Convergence of the perfectly matched layer method for transient acoustic-elastic interaction above an unbounded rough surface , 2019, ArXiv.

[23]  Weiying Zheng,et al.  PML Method for Electromagnetic Scattering Problem in a Two-Layer Medium , 2017, SIAM J. Numer. Anal..

[24]  Peijun Li,et al.  Analysis of Time-Domain Scattering by Periodic Structures , 2016, 1604.00944.

[25]  Peijun Li,et al.  Electromagnetic Scattering for Time-Domain Maxwell's Equations in an Unbounded Structure , 2016, 1604.07756.

[26]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[27]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[28]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[29]  F. Trèves Basic Linear Partial Differential Equations , 1975 .

[30]  Julien Diaz,et al.  A time domain analysis of PML models in acoustics , 2006 .

[31]  Weng Cho Chew,et al.  Advances in the theory of perfectly matched layers , 2001 .

[32]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[33]  Zhiming,et al.  ON MAXWELL EQUATIONS WITH THE TRANSPARENT BOUNDARY CONDITION , 2008 .

[34]  Qiang Chen,et al.  Discretization of the Time Domain CFIE for Acoustic Scattering Problems Using Convolution Quadrature , 2014, SIAM J. Math. Anal..

[35]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[36]  J. Pasciak,et al.  ANALYSIS OF A CARTESIAN PML APPROXIMATION TO THE THREE DIMENSIONAL ELECTROMAGNETIC WAVE SCATTERING PROBLEM , 2012 .

[37]  Zhiming Chen,et al.  An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..

[38]  Bo Zhang,et al.  Convergence analysis of the PML method for time-domain electromagnetic scattering problems , 2019, SIAM J. Numer. Anal..

[39]  Weiying Zheng,et al.  Convergence of the Uniaxial Perfectly Matched Layer Method for Time-Harmonic Scattering Problems in Two-Layered Media , 2010, SIAM J. Numer. Anal..

[40]  Joseph E. Pasciak,et al.  Analysis of a Cartesian PML approximation to acoustic scattering problems in R2 and R3 , 2013, J. Comput. Appl. Math..

[41]  Bo Wang,et al.  Fast and Accurate Computation of Time-Domain Acoustic Scattering Problems with Exact Nonreflecting Boundary Conditions , 2011, SIAM J. Appl. Math..

[42]  Joseph E. Pasciak,et al.  Analysis of a finite PML approximation to the three dimensional elastic wave scattering problem , 2010, Math. Comput..

[43]  P. M. van den Berg,et al.  Absorbing boundary conditions and perfectly matched layers - an analytic time-domain performance analysis , 2002 .