Simulating Martian boundary layer water ice clouds and the lidar measurements for the Phoenix mission

[1] Diurnal variation of ground fog and water ice cloud formation at the NASA Phoenix lander site is investigated using a one-dimensional Mars Microphysical Model (MMM) coupled with the results from the one-dimensional University of Helsinki atmospheric boundary layer (ABL) model. Phoenix is scheduled to reach Mars in May 2008 and land in the northern plains (65°–72°N). Observations from Mars Global Surveyor Thermal Emission Spectrometer for the proposed landing site and season Ls = 76°–125° have been used for the model initialization, both in the ABL and MMM. The diurnal variations of temperature and eddy diffusion coefficients produced by the uncoupled ABL are then applied to the MMM. Extinction and backscattering coefficients and lidar ratios are presented for the simulated dust and water ice clouds at the Phoenix location. Results of the dust and ice clouds are then used to simulate the Phoenix lidar measurements at two wavelengths, 532 and 1064 nm.

[1]  A. Colaprete,et al.  Cloud formation under Mars Pathfinder conditions , 1999 .

[2]  M. Kulmala,et al.  Nucleation studies in the Martian atmosphere , 2005 .

[3]  Ari-Matti Harri,et al.  Mars pathfinder: New data and new model simulations , 2004 .

[4]  James B. Pollack,et al.  Viking Lander image analysis of Martian atmospheric dust , 1995 .

[5]  Hannu Savijärvi,et al.  A model study of the PBL structure on Mars and the Earth , 1991 .

[6]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[7]  Mark T. Lemmon,et al.  Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder , 1999 .

[8]  T. Ackerman,et al.  Algorithms for the calculation of scattering by stratified spheres. , 1981, Applied optics.

[9]  H. V. Lauer,et al.  Thermal and Evolved Gas Analyzer : Part of the Mars Volatile and Climate Surveyor integrated payload , 2001 .

[10]  Alexandros Papayannis,et al.  Vertical aerosol distribution over Europe: Statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations , 2004 .

[11]  A. Quirantes,et al.  A T-matrix method and computer code for randomly oriented, axially symmetric coated scatterers , 2005 .

[12]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[13]  D. R. Worsnop,et al.  FREQUENCY-DEPENDENT OPTICAL CONSTANTS OF WATER ICE OBTAINED DIRECTLY FROM AEROSOL EXTINCTION SPECTRA , 1995 .

[14]  Hannu Savijärvi,et al.  Mars boundary layer modeling: Diurnal moisture cycle and soil properties at the Viking Lander 1 Site. , 1995 .

[15]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[16]  J. Nee,et al.  Lidar ratio and depolarization ratio for cirrus clouds. , 2002, Applied optics.

[17]  S. Squyres,et al.  Mars Descent Imager (MARDI) on the Mars Polar Lander , 2001 .

[18]  M. Mishchenko,et al.  Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids , 1997 .

[19]  H. Savijärvi A model study of the atmospheric boundary layer in the Mars pathfinder lander conditions , 1999 .

[20]  P.-Y. Li,et al.  Modelling dust distributions in the atmospheric boundary layer on Mars , 2007 .

[21]  R. C. Malone,et al.  A multidimensional model for aerosols - Description of computational analogs , 1988 .

[22]  J. Pollack,et al.  Numerical simulations of the formation and evolution of water ice clouds in the Martian atmosphere , 1993 .

[23]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[24]  Jimmy D Bell,et al.  Absorption and scattering properties of the Martian dust in the solar wavelengths. , 1997, Journal of geophysical research.

[25]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .